Skip to main content
Log in

A generic label-free microfluidic microobject sorter using a magnetic elastic diverter

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Cell sorters play important roles in biological and medical applications, such as cellular behavior study and disease diagnosis and therapy. This work presents a label-free microfluidic sorter that has a downstream-pointing magnetic elastic diverter. Different with most existing magnetic sorters, the proposed device does not require the target microobjects to be intrinsically magnetic or coated with magnetic particles, giving users more flexibility in sorting criteria. The diverter is wirelessly deformed by an applied magnetic field, and its deformation induces a fluid vortex that sorts incoming microobjects, e.g., cells, to the collection outlet. The diverter does not touch samples in this process, reducing the sample contamination and damage risks. This sorter uses a magnetic field generated by off-chip electromagnetic coils that are centimeters away from the device. With simple structure and no on-chip circuits or coils, this device can be integrated with other lab-on-a-chip instruments in a sealed chip, ameliorating the safety concerns in handling hazardous samples. The parallel and independent control of two such diverters on a single chip were demonstrated, showing the potential of doubling the overall throughput or forming a two-stage cascaded sorter. The sorter was modeled based on the Euler-Bernoulli beam theory and its reliability was demonstrated by achieving a raw success rate of 96.68% in sorting 1506 registered microbeads. With a simple structure, the sorter is easy and cheap to fabricate. The advantages of the proposed sorter make it a promising multi-purpose sorting tool in both academic and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • J.D. Adams, U. Kim, H.T. Soh, Multitarget magnetic activated cell sorter. Proc. Natl. Acad. Sci. USA. 105(47), 18165–18170 (2008)

    Article  Google Scholar 

  • R.W. Applegate, J. Squier, T. Vestad, J. Oakey, D.W.M. Marr, P. Bado, M.A. Dugan, A.A. Said, Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab Chip. 6(3), 422–426 (2006)

    Article  Google Scholar 

  • B.J. Bain, I. Bates, M.A. Laffan, S.M. Lewis, Dacie and Lewis practical haematology (2011)

  • C. Carr, M. Espy, P. Nath, S.L. Martin, M.D. Ward, J. Martin, Design, fabrication and demonstration of a magnetophoresis chamber with 25 output fractions. J. Magn. Magn. Mater. 321(10), 1440–1445 (2009)

    Article  Google Scholar 

  • C.H. Chen, S.H. Cho, F. Tsai, A. Erten, Y.H. Lo, Microfluidic cell sorter with integrated piezoelectric actuator. Biomed. Microdevices. 11(6), 1223–1231 (2009)

    Article  Google Scholar 

  • Y. Chen, A.J. Chung, T.H. Wu, M.A. Teitell, D. Di Carlo, P.Y. Chiou, Pulsed laser activated cell sorting with three dimensional sheathless inertial focusing. Small. 10(9), 1746–1751 (2014)

    Article  Google Scholar 

  • P.Y. Chiou, A.T. Ohta, M.C. Wu, Massively parallel manipulation of single cells and microparticles using optical images. Nature. 436(7049), 370–372 (2005)

    Article  Google Scholar 

  • S. Choi, S. Song, C. Choi, J.K. Park, Continuous blood cell separation by hydrophoretic filtration. Lab Chip. 7(11), 1532–1538 (2007)

    Article  Google Scholar 

  • D. Di Carlo, D. Irimia, R.G. Tompkins, M. Toner, Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. USA. 104(48), 18892–18897 (2007)

    Article  Google Scholar 

  • E. Diller, M. Sitti, Micro-scale mobile robotics. Found Trends Robot. 2(3), 143–259 (2011)

    Article  Google Scholar 

  • X. Ding, S.C.S. Lin, B. Kiraly, H. Yue, S. Li, I.K. Chiang, J. Shi, S.J. Benkovic, T.J. Huang, On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl. Acad. Sci. USA. 109(28), 11105–11109 (2012)

    Article  Google Scholar 

  • M.D. Estes, J. Do, C.H. Ahn, On chip cell separator using magnetic bead-based enrichment and depletion of various surface markers. Biomed. Microdevices. 11(2), 509–515 (2009)

    Article  Google Scholar 

  • M.A. Faridi, H. Ramachandraiah, I. Iranmanesh, D. Grishenkov, M. Wiklund, A. Russom, MicroBubble activated acoustic cell sorting. Biomed. Microdevices. 19(2), 23 (2017)

    Article  Google Scholar 

  • J.Y. Gauthier, C. Lexcellent, A. Hubert, J. Abadie, N. Chaillet, Magneto-thermo-mechanical modeling of a magnetic shape memory alloy Ni-Mn-Ga single crystal. Ann. Solid Struct. Mech. 2(1), 19–31 (2011)

    Article  Google Scholar 

  • F. Guo, X.H. Ji, K. Liu, R.X. He, L.B. Zhao, Z.X. Guo, W. Liu, S.S. Guo, X.Z. Zhao, Droplet electric separator microfluidic device for cell sorting. Appl. Phys. Lett. 96(19). doi:10.1063/1.3360812 (2010)

  • C.T. Ho, R.Z. Lin, H.Y. Chang, C.H. Liu, Micromachined electrochemical T-switches for cell sorting applications. Lab Chip. 5(11), 1248–1258 (2005)

    Article  Google Scholar 

  • H.W. Hou, A.A.S. Bhagat, W.C. Lee, S. Huang, J. Han, C.T. Lim, Microfluidic devices for blood fractionation. Micromachines. 2(3), 319–343 (2011)

    Article  Google Scholar 

  • P. Howell, J. Golden, L. Hilliard, J. Erickson, D. Mott, F. Ligler, Two simple and rugged designs for creating microfluidic sheath flow. Lab Chip. 8(7), 1097–1103 (2008)

    Article  Google Scholar 

  • S.C. Hur, N.K. Henderson-MacLennan, E.R.B. McCabe, D. Di Carlo, Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip. 11(5), 912–920 (2011)

    Article  Google Scholar 

  • D.W. Inglis, R. Riehn, R.H. Austin, J.C. Sturm, Continuous microfluidic immunomagnetic cell separation. Appl. Phys. Lett. 85(21), 5093–5095 (2004)

    Article  Google Scholar 

  • R. Johann, P. Renaud, A simple mechanism for reliable particle sorting in a microdevice with combined electroosmotic and pressure-driven flow. Electrophoresis. 25(21–22), 3720–3729 (2004)

    Article  Google Scholar 

  • I.D. Johnston, D.K. McCluskey, C.K.L. Tan, M.C. Tracey, Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24, 035017 (2014)

    Article  Google Scholar 

  • A. Lenshof, T. Laurell, Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39(3), 1203–1217 (2010)

    Article  Google Scholar 

  • S. Li, X. Ding, Z. Mao, Y. Chen, N. Nama, F. Guo, P. Li, L. Wang, C.E. Cameron, T.J. Huang, Standing surface acoustic wave (SSAW)-based cell waching. Lab Chip. 15, 331–338 (2015)

    Article  Google Scholar 

  • J. Lin, K. Owsley, M. Bahr, E. Diebold, D.D. Carlo, A frequency-multiplexed, microfluidic parallel flow cytometer for high-throughput screening. In: 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 208–209 (2016)

  • M. Liu, J. Sun, Y. Sun, C. Bock, Q. Chen, Thickness-dependent mechanical properties of polydimethylsiloxane membranes. J. Micromech. Microeng. 19(3), 035028 (2009)

    Article  Google Scholar 

  • M.P. MacDonald, G.C. Spalding, K. Dholakia, Microfluidic sorting in an optical lattice. Nature 426, 421–424 (2003)

    Article  Google Scholar 

  • D. Mattanovich, N. Borth, Applications of cell sorting in biotechnology. Microb. Cell Fact. 5(1), 12 (2006)

    Article  Google Scholar 

  • L. Mazutis, J. Gilbert, W.L. Ung, D.A. Weitz, A.D. Griffiths, J.A. Heyman, Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protocols. 8(5), 870–891 (2013)

    Article  Google Scholar 

  • B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.P. Renault, H. Rothuizen, H. Schmid, P. SchmidtWinkel, R. Stutz, H. Wolf, Printing meets lithography: soft approaches to high-resolution patterning (vol 45, pg 697, 2001). IBM J. Res. Dev. 45(6), 870 (2001)

    Article  Google Scholar 

  • B. Nelson, I. Kaliakatsos, J. Abbott, Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)

    Article  Google Scholar 

  • J. Nguyen, Y. Wei, Y. Zheng, C. Wang, Y. Sun, On-chip sample preparation for complete blood count from raw blood. Lab Chip. 15(6), 1533–1544 (2015)

    Article  Google Scholar 

  • A.T. Ohta, P.Y. Chiou, T.H. Han, J.C. Liao, U. Bhardwaj, E.R.B. McCabe, F. Yu, R. Sun, M.C. Wu, Dynamic cell and microparticle control via optoelectronic tweezers. J. Microelectromech. Syst. 16(3), 491–499 (2007)

    Article  Google Scholar 

  • Q. Ramadan, V. Samper, D.P. Poenar, C. Yu, An integrated microfluidic platform for magnetic microbeads separation and confinement. Biosens. Bioelectron. 21(9), 1693–1702 (2006)

    Article  Google Scholar 

  • X. Ren, M. Bachman, C. Sims, G.P. Li, N. Allbritton, Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane). J. Chromatogr. B Biomed. Sci. Appl. 762(2), 117–125 (2001)

    Article  Google Scholar 

  • A. Russom, A.K. Gupta, S. Nagrath, D.D. Carlo, J.F. Edd, M. Toner, Differential inertial focusing of particles in curved low-aspect-ratio microchannels. New J Phys. 11(7), 075025 (2009)

    Article  Google Scholar 

  • L. Schmid, D. Weitz, T. Franke, Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip. 14(19), 3710–3718 (2014)

    Article  Google Scholar 

  • G.J. Shah, A.T. Ohta, E.P.Y. Chiou, M.C. Wu, C.J. Kim, EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip. 9(12), 1732–1739 (2009)

    Article  Google Scholar 

  • C. Wyatt Shields IV, C. Reyes, G. López, Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip. 15(5), 1230–1249 (2015)

  • S.L. Stott, C.H.C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, Ba. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Floyd, A.J. Gilman, J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaran, Da. Haber, M. Toner, Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci USA. 18(35), 392–397 (2010)

    Google Scholar 

  • P. Szaniszlo, N. Wang, M. Sinha, L.M. Reece, J.W. Van Hook, B. Luxon, J.F. Leary, Getting the right cells to the array: gene expression microarray analysis of cell mixtures and sorted cells. Cytometry A. 59, 191–202 (2004)

    Article  Google Scholar 

  • L. Wang, La. Flanagan, E. Monuki, N.L. Jeon, A.P. Lee, Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. Lab Chip. 7(9), 1114–20 (2007)

    Article  Google Scholar 

  • X. Wang, S. Chen, M. Kong, Z. Wang, K. Costa, R. Li, D. Sun, Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip. 11, 3656–3662 (2011)

    Article  Google Scholar 

  • M.E. Warkiani, G. Guan, K.B. Luan, W.C. Lee, A.A.S. Bhagat, P.K. Chaudhuri, D.S.W. Tan, W.T. Lim, S.C. Lee, P.C.Y. Chen, C.T. Lim, J. Han, Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip. 14(1), 128–37 (2014)

    Article  Google Scholar 

  • H.W. Wu, X.Z. Lin, S.M. Hwang, G.B. Lee, A microfluidic device for separation of amniotic fluid mesenchymal stem cells utilizing louver-array structures. Biomed Microdevices. 11(6), 1297–1307 (2009)

    Article  Google Scholar 

  • Y. Yamanishi, S. Sakuma, K. Onda, F. Arai, Powerful actuation of magnetized microtools by focused magnetic field for particle sorting in a chip. Biomed. Microdevices. 12, 745–752 (2010)

    Article  Google Scholar 

  • M. Zborowski, J.J. Chamers, Rare cell separation and analysis by magnetic sorting. Anal. Chem. 83(21), 8050–8056 (2011)

    Article  Google Scholar 

  • J. Zhang, E. Diller, Tetherless mobile micrograsping using a magnetic elastic composite material. Smart Mater. Struct. 25, 11LT03 (2016)

    Article  Google Scholar 

  • J. Zhang, P. Jain, E. Diller, Independent control of two millimeter-scale soft-bodied magnetic robotic swimmers. In: IEEE International Conference on Robotics and Automation, pp. 1933–1938 (2016)

  • J. Zhang, O. Onaizah, K. Middleton, L. You, E. Diller, Reliable grasping of three-dimensional untethered mobile magnetic microgripper for autonomous pick-and-place. IEEE Robot. Autom. Lett. 2(2), 835–840 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the use of the Centre for Microfluidic Systems in Chemistry and Biology at the University of Toronto for providing equipment access.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Diller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 3.45 MB)

(MP4 1.09 MB)

(MP4 3.44 MB)

(PDF 1.61 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Onaizah, O., Sadri, A. et al. A generic label-free microfluidic microobject sorter using a magnetic elastic diverter. Biomed Microdevices 19, 43 (2017). https://doi.org/10.1007/s10544-017-0183-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0183-2

Keywords

Navigation