Skip to main content

Advertisement

Log in

Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Extracellular shed vesicles, including exosomes and microvesicles, are disseminated throughout the body and represent an important conduit of cell communication. Cancer-cell-derived microvesicles have potential as a cancer biomarker as they help shape the tumor microenvironment to promote the growth of the primary tumor and prime the metastatic niche. It is likely that, in cancer cell cultures, the two constituent extracellular shed vesicle subpopulations, observed in dynamic light scattering, represent an exosome population and a cancer-cell-specific microvesicle population and that extracellular shed vesicle size provides information about provenance and cargo. We have designed and implemented a novel microfluidic technology that separates microvesicles, as a function of diameter, from heterogeneous populations of cancer-cell-derived extracellular shed vesicles. We measured cargo carried by the microvesicle subpopulation processed through this microfluidic platform. Such analyses could enable future investigations to more accurately and reliably determine provenance, functional activity, and mechanisms of transformation in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • M.A. Antonyak, L. Bo, K. Lindsey, J.L. Johnson, J.E. Druso, K.L. Bryant, D.A. Holowka, R.A. Cerione, L.K. Boroughs, Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Pro. Natl. Acad. Sci. 108(42), 17569–17569 (2011)

    Google Scholar 

  • T.H. Lee, E. D’Asti, N. Magnus, K. Al-Nedawi, B. Meehan, J. Rak, Microvesicles as mediators of intercellular communication in cancer–the emerging science of cellular ’debris’. Semin. Immunopathol. 33(5), 455–67 (2011)

    Article  Google Scholar 

  • X.B. Li, Z.R. Zhang, H.J. Schluesener, S.Q. Xu, Role of exosomes in immune regulation. J. Cell. Mol. Med. 10(2), 364–375 (2006)

    Article  Google Scholar 

  • A. Bobrie, M. Colombo, G. Raposo, C. Th´ery, Exosome secretion: molecular mechanisms and roles in immune responses. Traffic (Copenhagen, Denmark). 12(12), 1659–68 (2011)

    Article  Google Scholar 

  • V. Muralidharan-Chari, J.W. Clancy, A.0. Sedgwick, C. D’Souza- Schorey, Microvesicles: mediators of extracellular communication during cancer progression. J. Cell Sci. 123(Pt 10), 1603–11 (2010)

    Article  Google Scholar 

  • R.M. Johnstone, M. Adam, J.R. Hammond, L. Orr, C. Turbide, Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 262(19), 9412–9420 (1987)

    Google Scholar 

  • H. Peinado, S. Lavotshkin, D. Lyden, The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin. Cancer Biol. 21(2), 139–46 (2011)

    Article  Google Scholar 

  • C. D’Souza-Schorey, J.W. Clancy, Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev. 26(12), 1287–99 (2012)

    Article  Google Scholar 

  • S. Keller, M.P. Sanderson, A. Stoeck, P. Altevogt, Exosomes: from biogenesis and secretion to biological function. Immunol. Lett. 107, 102–108 (2006)

    Article  Google Scholar 

  • G. van Niel, I. Porto-Carreiro, S. Simoes, G. Raposo, Exosomes: a common pathway for a specialized function. J. Biochem. 140(1), 13–21 (2006)

    Article  Google Scholar 

  • D.J. Burgess, Glioblastoma: Microvesicles as major biomarkers. Nat. Rev. Cancer. 13(1), 8 (2013)

    Google Scholar 

  • J. Skog, T. Würdinger, S. van Rijn, D.H. Meijer, L. Gainche, M. Sena Esteves, W.T. Curry, B.S. Carter, A.M. Krichevsky, X.O. Breakefield, Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10(12), 1470–6 (2008)

    Article  Google Scholar 

  • W. Wang, H. Li, Z. Yan, J. Shenghua, Peripheral blood microvesicles are potential biomarkers for hepatocellular carcinoma - Cancer Biomarkers - Volume 13, Number 5 / 2013 - IOS Press. Cancer Biomarkers. 13(5), 351–357 (2013)

    Google Scholar 

  • J. Nilsson, J. Skog, A. Nordstrand, V. Baranov, L. Mincheva-Nilsson, X.O. Breakefield, A.Widmark, Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br. J. Cancer. 100(10), 1603–7 (2009)

    Article  Google Scholar 

  • C. Grange, M. Tapparo, F. Collino, L. Vitillo, C. Damasco, M.C. Deregibus, C. Tetta, B. Bussolati, G. Camussi, Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 71(15), 5346–56 (2011)

    Article  Google Scholar 

  • S. Mathivanan, R.J. Simpson, ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 9(21), 4997–5000 (2009)

    Article  Google Scholar 

  • E. Cocucci, G. Racchetti, J. Meldolesi, Shedding microvesicles: artefacts no more. Trends Cell Biol. 19(2), 43–51 (2009)

    Article  Google Scholar 

  • M.A. Antonyak, K.F. Wilson, R.A. Cerione, R(h)oads to microvesicles. Small GTPases. 3(4), 219–24 (2012)

    Article  Google Scholar 

  • B. Li, M.A. Antonyak, J. Zhang, R.A. Cerione, RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene. 31(45), 4740–9 (2012)

    Article  Google Scholar 

  • K. Al-Nedawi, B. Meehan, J. Micallef, V. Lhotak, L. May, A. Guha, J. Rak, Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10(5), 619–24 (2008)

    Article  Google Scholar 

  • K. Al-Nedawi, B. Meehan, J. Rak, Microvesicles: messengers and mediators of tumor progression. Cell Cycle. 8, 2014–2018 (2009)

    Article  Google Scholar 

  • D. Di Vizio, M. Morello, A.C. Dudley, P.W. Schow, R.M. Adam, S. Morley, D. Mulholland, M. Rotinen, M.H. Hager, L. Insabato, M.A. Moses, F. Demichelis, M.P. Lisanti, W. Hong, M. Klagsbrun, N.A. Bhowmick, M.A. Rubin, C. D’Souza-Schorey, M.R. Freeman, Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am. J. Pathol. 181(5), 1573–84 (2012)

    Article  Google Scholar 

  • S.H. Kim, N. Bianco, R. Menon, E.R. Lechman, W.J. Shufesky, A.E. Morelli, P.D. Robbins, Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Molecular therapy: The Journal of the American Society of Gene Therapy. 13(2), 289–300 (2006)

    Article  Google Scholar 

  • R. Valenti, V. Huber, M. Iero, P. Filipazzi, G. Parmiani, L. Rivoltini, Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res. 67(7), 2912–2915 (2007)

    Article  Google Scholar 

  • L. Mincheva-Nilsson, V. Baranov, The role of placental exosomes in reproduction. Am. J. Reprod. Immunol. (New York, N.Y. : 1989). 63(6), 520–33 (2010)

    Article  Google Scholar 

  • R.A. Dragovic, C. Gardiner, A.S. Brooks, D.S. Tannetta, D.J.P. Ferguson, P. Hole, B. Carr, C.W.G. Redman, A.L. Harris, P.J. Dobson, P. Harrison, I.L. Sargent, Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine: Nanotechnology, Biology and Medicine. 7(6), 780–8 (2011)

    Article  Google Scholar 

  • B. György, T.G. Szabó, M. Pásztói, Z. Pál, P. Misják, B. Aradi, V. László, E. Pállinger, E. Pap, A. Kittel, G. Nagy, A. Falus, E.I. Buzás, Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci.: CMLS. 68(16), 2667–88 (2011)

    Article  Google Scholar 

  • E. van der Pol, A.N. Böing, P. Harrison, A. Sturk, R. Nieuwland, Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 64(3), 676–705 (2012)

    Article  Google Scholar 

  • J.S. Schorey, S. Bhatnagar, Exosome function: from tumor immunology to pathogen biology. Traffic. 9, 871–881 (2008)

    Article  Google Scholar 

  • E. van der Pol, A.G. Hoekstra, A. Sturk, C. Otto, T.G. van Leeuwen, R. Nieuwland, Optical and non-optical methods for detection and characterization of microparticles and exosomes. J. Thromb. Haemost. : JTH. 8(12), 2596–607 (2010)

    Article  Google Scholar 

  • D.-S. Choi, J.-M. Lee, G.W. Park, H.-W. Lim, J.Y. Bang, Y.-K. Kim, K.-H. Kwon, J.K. Ho, K.P. Kim, Y.S. Gho, Proteomic analysis of microvesicles derived from human colorectal cancer cells. J. Proteome Res. 6(12), 4646–55 (2007)

    Article  Google Scholar 

  • S.M. Santana, MA. Antonyak, R.A. Cerione, B.J. Kirby, Cancerous epithelial cell lines shed extracellular vesicles with a bimodal size distribution that is sensitive to glutamine inhibition. Phys. Biol., submitted (2014)

  • M. Jorgensen, R. Baek, S. Pedersen, E.K.L. Sondergaard, S.R. Kristensen, K. Varming, Extracellular vesicle (EV) array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping. Journal Extracellular Vesicles, 2 (2013)

  • R. Wubbolts, S.L. Rachel, P.T.M. Veenhuizen, G. Schwarzmann, W. Mobius, J. Hoernschemeyer, J.-W. Slot, H.J. Geuze, W. Stoorvogel, Proteomic and biochemical analyses of human b cell-derived exosomes: potential implications for their function and multivesicular body formation. J. Biol. Chem. 278(13), 10963–10972 (2003)

    Article  Google Scholar 

  • R.J. Simpson, J.W.E. Lim, R.L. Moritz, S. Mathivanan, Exosomes: proteomic insights and diagnostic potential. Expert Review of Proteomics. 6(3), 267–83 (2009)

    Article  Google Scholar 

  • A.S. Lawrie, A. Albanyan, R.A. Cardigan, I.J. Mackie, P. Harrison, Microparticle sizing by dynamic light scattering in fresh-frozen plasma. Vox Sanguinis. 96(3), 206–12 (2009)

    Article  Google Scholar 

  • S. Mathivanan, J.W.E. Lim, B.J. Tauro, H. Ji, R.L. Moritz, R.J. Simpson, Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Molecular & cellular Proteomics: MCP. 9(2), 197–208 (2010)

    Article  Google Scholar 

  • L.V. Coren, T. Shatzer, D.E. Ott, CD45 immunoaffinity depletion of vesicles from Jurkat T cells demonstrates that exosomes contain CD45: no evidence for a distinct exosome/HIV-1 budding pathway. Retrovirology. 5(1), 64 (2008)

    Article  Google Scholar 

  • B.J. Tauro, D.W. Greening, R.A. Mathias, H. Ji, S. Mathivanan, A.M. Scott, R.J. Simpson, Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods (San Diego, Calif.) 56(2), 293–304 (2012)

    Article  Google Scholar 

  • S. Mathivanan, H. Ji, R.J. Simpson, Exosomes: extracellular organelles important in intercellular communication. J. Proteome. 73, 1907–1920 (2010)

    Article  Google Scholar 

  • D.W. Inglis, J.A. Davis, R.H. Austin, J.C. Sturm, Critical particle size for fractionation by deterministic lateral displacement. Lab on a Chip. 6(5), 655–8 (2006)

    Article  Google Scholar 

  • L.R. Huang, E.C. Cox, R.H. Austin, J.C. Sturm, Continuous particle separation through deterministic lateral displacement. Science. 304, 987–990 (2004)

    Article  Google Scholar 

  • N. Pamme, Continuous flow separations in microfluidic devices. Lab on a Chip. 7(12), 1644 (2007)

    Article  Google Scholar 

  • J.P. Smith, A.C. Barbati, S.M. Santana, J.P. Gleghorn, B.J. Kirby, Microfluidic transport in microdevices for rare cell capture. Electrophoresis. 33(21), 3133–3142 (2012)

    Article  Google Scholar 

  • J.P. Gleghorn, J.P. Smith, B.J. Kirby, Transport and collision dynamics in periodic asymmetric obstacle arrays: Rational design of microfluidic rare-cell immunocapture devices. Phys. Rev. E. 88(3), 032136 (2013)

    Article  Google Scholar 

  • M. Heller, H. Bruus, A theoretical analysis of the resolution due to diffusion and size dispersion of particles in deterministic lateral displacement devices. J. Micromech. Microeng. 18(7), 075030 (2008)

    Article  Google Scholar 

  • K. Loutherback, K.S. Chou, J. Newman, J. Puchalla, R.H. Austin, J.C. Sturm, Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid. Nanofluid. 9(6), 1143–1149 (2010)

    Article  Google Scholar 

  • E.D. Pratt, C. Huang, B.G. Hawkins, J.P. Gleghorn, B.J. Kirby, Rare cell capture in microfluidic devices. Chem. Eng. Sci. 66, 1508–1522 (2011)

    Article  Google Scholar 

  • Y. Li, C. Dalton, J.H. Crabtree, G. Nilsson, K.V. Kaler, Continuous dielectrophoretic cell separation microfluidic device. Lab on a chip. 7(2), 239–48 (2007)

    Article  Google Scholar 

  • B.G. Hawkins, A.E. Smith, Y.A. Syed, B.J. Kirby, Continuous-flow particle separation by 3D insulative dielectrophoresis using coherently shaped, dc-biased, ac electric fields. Anal. Chem. 79, 7291–7300 (2007)

    Article  Google Scholar 

  • J.V. Green, M. Radisic, S.K. Murthy, Deterministic lateral displacement as a means to enrich large cells for tissue engineering. Anal. Chem. 81(21), 9178–82 (2009)

    Article  Google Scholar 

  • S.H. Holm, J.P. Beech, M.P. Barrett, J.O. Tegenfeldt, Separation of parasites from human blood using deterministic lateral displacement. Lab on a chip. 11(7), 1326–32 (2011)

    Article  Google Scholar 

  • D.W. Inglis, N. Herman, G. Vesey, Highly accurate deterministic lateral displacement device and its application to purification of fungal spores. Biomicrofluidics. 4(2), 024109 (2010)

    Article  Google Scholar 

  • J.P. Gleghorn, E.D. Pratt, D. Denning, H. Liu, N.H. Bander, S.T. Tagawa, D.M. Nanus, P.A. Giannakakou, B.J. Kirby, Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab on a chip. 10, 27–29 (2010)

    Article  Google Scholar 

  • G. Taraboletti, S. D’Ascenzo, I. Giusti, D. Marchetti, P. Borsotti, D. Millimaggi, R. Giavazzi, A. Pavan, V. Dolo, Bioavailability of VEGF in tumor-shed vesicles depends on vesicle burst induced by acidic pH. Neoplasia (New York, N.Y.) 8(2), 96–103 (2006)

    Article  Google Scholar 

  • M. Skobe, T. Hawighorst, D.G. Jackson, R. Prevo, L. Janes, P. Velasco, L. Riccardi, K. Alitalo, K. Claffey, M. Detmar, Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med. 7(2), 192–8 (2001)

    Article  Google Scholar 

  • S.A. Stacker, C. Caesar, M.E. Baldwin, G.E. Thornton, R.A. Williams, R. Prevo, D.G. Jackson, S. Nishikawa, H. Kubo, M.G. Achen, VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat. Med. 7(2), 186–91 (2001)

    Article  Google Scholar 

  • S.-I. Ishigami, S. Arii, M. Furutani, M. Niwano, T. Harada, M. Mizumoto, A. Mori, H. Onodera, M. Imamura, Predictive value of vascular endothelial growth factor (VEGF) in metastasis and prognosis of human colorectal cancer. Br. J. Cancer. 78(10), 1379–1384 (1998)

    Article  Google Scholar 

  • A. Yuan, E.L. Farber, A.L. Rapoport, D. Tejada, R. Deniskin, N.B. Akhmedov, D.B. Farber, Transfer of microRNAs by embryonic stem cell microvesicles. PloS one. 4 (3), 4722 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Kirby.

Additional information

This work was supported by the National Cancer Institutes under Award Number U54CA143876 and the Alfred P. Sloan Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santana, S., Antonyak, M., Cerione, R. et al. Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations. Biomed Microdevices 16, 869–877 (2014). https://doi.org/10.1007/s10544-014-9891-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9891-z

Keywords

Navigation