Skip to main content

Advertisement

Log in

A microfabricated platform to form three-dimensional toroidal multicellular aggregate

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Techniques that allow cells to self-assemble into three-dimensional (3D) spheroid microtissues provide powerful in vitro models that are becoming increasingly popular in fields such as stem cell research, tissue engineering, and cancer biology. Appropriate simulation of the 3D environment in which tissues normally develop and function is crucial for the engineering of in vitro models that can be used for the formation of complex tissues. We have developed a unique multicellular aggregate formation platform that utilizes a maskless gray-scale photolithography. The cellular aggregate formed using this platform has a toroidal-like geometry and includes a micro lumen that facilitates the supply of oxygen and growth factors and the expulsion of waste products. As a result, this platform was capable of rapidly producing hundreds of multicellular aggregates at a time, and of regulating the diameter of aggregates with complex design. These toroidal multicellular aggregates can grow as long-term culture. In addition, the micro lumen can be used as a continuous channel and for the insertion of a vascular system or a nerve system into the assembled tissue. These platform characteristics highlight its potential to be used in a wide variety of applications, e.g. as a bioactuator, as a micro-machine component or in drug screening and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • D.R. Albrecht, G.H. Underhill, T.B. Wassermann, R.L. Sah, S.N. Bhatia, Probing the role of multicellular organization in three-dimensional microenvironments. Nat. Methods 3, 369–375 (2006)

    Article  Google Scholar 

  • T. Anada, T. Masuda, Y. Honda, J. Fukuda, F. Arai, T. Fukuda et al., Three-dimensional cell culture device utilizing thin membrane deformation by decompression. Sensors Actuators B Chem. 147, 376–379 (2010)

    Article  Google Scholar 

  • U. Anderer, J. Libera, In vitro engineering of human autogenous cartilage. J. Bone Miner. Res. 17, 1420–1429 (2002)

    Article  Google Scholar 

  • J. Barrila, A.L. Radtke, A. Crabbé, S.F. Sarker, M.M. Herbst-Kralovetz, C.M. Ott et al., Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat. Rev. Micro. 8, 791–801 (2010)

    Article  Google Scholar 

  • T.J. Bartosh, J.H. Ylostalo, A. Mohammadipoor, N. Bazhanov, K. Coble, K. Claypool, et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc. Natl. Acad. Sci. U S A. (2010)

  • D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998)

    Article  Google Scholar 

  • J. Fukuda, A. Khademhosseini, Y. Yeo, X. Yang, J. Yeh, G. Eng et al., Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials 27, 5259–5267 (2006)

    Article  Google Scholar 

  • L.G. Griffith, M.A. Swartz, Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7, 211–224 (2006)

    Article  Google Scholar 

  • A. Hoshikawa, Y. Nakayama, T. Matsuda, H. Oda, K. Nakamura, K. Mabuchi, Encapsulation of chondrocytes in photopolymerizable styrenated gelatin for cartilage tissue engineering. Tissue Eng. 12, 2333–2341 (2006)

    Article  Google Scholar 

  • K. Itoga, J. Kobayashi, Y. Tsuda, M. Yamato, T. Okano, Second-generation maskless photolithography device for surface micropatterning and microfluidic channel fabrication. Anal. Chem. 80, 1323–1327 (2008)

    Article  Google Scholar 

  • W. Kafienah, M. Jakob, O. Demarteau, A. Frazer, M.D. Barker, I. Martin et al., Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes. Tissue Eng. 8, 817–826 (2002)

    Article  Google Scholar 

  • J.M. Kelm, N.E. Timmins, C.J. Brown, M. Fussenegger, L.K. Nielsen, Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng. 83, 173–180 (2003)

    Article  Google Scholar 

  • J.M. Kelm, V. Lorber, J.G. Snedeker, D. Schmidt, A. Broggini-Tenzer, M. Weisstanner et al., A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. J. Biotechnol. 148, 46–55 (2010)

    Article  Google Scholar 

  • A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. U. S. A. 103, 2480–2487 (2006)

    Article  Google Scholar 

  • D. Kloss, M. Fischer, A. Rothermel, J.C. Simon, A.A. Robitzki, Drug testing on 3D in vitro tissues trapped on a microcavity chip. Lab. Chip. 8, 879–884 (2008)

    Article  Google Scholar 

  • W.M. Kulyk, J.L. Franklin, L.M. Hoffman, Sox9 expression during chondrogenesis in micromass cultures of embryonic limb mesenchyme. Exp. Cell Res. 255, 327–332 (2000)

    Article  Google Scholar 

  • L.A. Kunz-Schughart, M. Kreutz, R. Knuechel, Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int. J. Exp. Pathol. 79, 1–23 (1998)

    Article  Google Scholar 

  • C.M. Livoti, J.R. Morgan, Self-assembly and tissue fusion of toroid-shaped minimal building units. Tissue Eng. Part A. 16, 2051–2061 (2010)

    Article  Google Scholar 

  • K. Mamchaoui, G. Saumon, A method for measuring the oxygen consumption of intact cell monolayers. Am. J. Physiol. Lung Cell Mol. Physiol. 278, L858–L863 (2000)

    Google Scholar 

  • A.P. McGuigan, M.V. Sefton, Vascularized organoid engineered by modular assembly enables blood perfusion. Proc. Natl. Acad. Sci. U. S. A. 103, 11461–11466 (2006)

    Article  Google Scholar 

  • E. Metzen, M. Wolff, J. Fandrey, W. Jelkmann, Pericellular PO2 and O2 consumption in monolayer cell cultures. Respir. Physiol. 100, 101–106 (1995)

    Article  Google Scholar 

  • V. Mironov, R.P. Visconti, V. Kasyanov, G. Forgacs, C.J. Drake, R.R. Markwald, Organ printing: tissue spheroids as building blocks. Biomaterials 30, 2164–2174 (2009)

    Article  Google Scholar 

  • M. Miyazawa, T. Torii, Y. Toshimitsu, K. Okada, I. Koyama, Hepatocyte dynamics in a three-dimensional rotating bioreactor. J. Gastroenterol. Hepatol. 22, 1959–1964 (2007)

    Article  Google Scholar 

  • A.P. Napolitano, D.M. Dean, A.J. Man, J. Youssef, D.N. Ho, A.P. Rago et al., Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. Biotechniques 43(494), 6–500 (2007)

    Google Scholar 

  • J.W. Nichol, S.T. Koshy, H. Bae, C.M. Hwang, S. Yamanlar, A. Khademhosseini, Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536–5544 (2010)

    Article  Google Scholar 

  • D.C. O’ Shea, W.S. Rockward, Gray-scale masks for diffractive-optics fabrication: II. Spatially filtered halftone screens. Appl. Opt. 34, 7518–7526 (1995)

    Article  Google Scholar 

  • J.T. Oliveira, T.C. Santos, L. Martins, M.A. Silva, A.P. Marques, A.G. Castro et al., Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice. J. Tissue Eng. Regen. Med. 3, 493–500 (2009)

    Article  Google Scholar 

  • H. Ota, R. Yamamoto, K. Deguchi, Y. Tanaka, Y. Kazoe, Y. Sato et al., Three-dimensional spheroid-forming lab-on-a-chip using micro-rotational flow. Sensors Actuators B Chem. 147, 359–365 (2010)

    Article  Google Scholar 

  • J. Rouwkema, J. de Boer, C.A. Van Blitterswijk, Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng. 12, 2685–2693 (2006)

    Article  Google Scholar 

  • T. Sasagawa, T. Shimizu, S. Sekiya, Y. Haraguchi, M. Yamato, Y. Sawa et al., Design of prevascularized three-dimensional cell-dense tissues using a cell sheet stacking manipulation technology. Biomaterials 31, 1646–1654 (2010)

    Article  Google Scholar 

  • T. Shin’oka, Y. Imai, Y. Ikada, Transplantation of a tissue-engineered pulmonary artery. N. Engl. J. Med. 344, 532–533 (2001)

    Article  Google Scholar 

  • A. Skardal, S.F. Sarker, A. Crabbé, C.A. Nickerson, G.D. Prestwich, The generation of 3-D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating wall vessel bioreactor. Biomaterials 31, 8426–8435 (2010)

    Article  Google Scholar 

  • T.J. Suleski, D.C. O’ Shea, Gray-scale masks for diffractive-optics fabrication: I. Commercial slide imagers. Appl. Opt. 34, 7507–7517 (1995)

    Article  Google Scholar 

  • J.Z. Tong, P. De Lagausie, V. Furlan, T. Cresteil, O. Bernard, F. Alvarez, Long-term culture of adult rat hepatocyte spheroids. Exp. Cell Res. 200, 326–332 (1992)

    Article  Google Scholar 

  • K. Totsu, K. Fujishiro, S. Tanaka, M. Esashi, Fabrication of three-dimensional microstructure using maskless gray-scale lithography. Sensors Actuators A Phys. 130–131, 387–392 (2006)

    Article  Google Scholar 

  • Y.C. Tung, A.Y. Hsiao, S.G. Allen, Y.S. Torisawa, M. Ho, S. Takayama, High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136, 473–478 (2011)

    Article  Google Scholar 

  • B.R. Unsworth, P.I. Lelkes, Growing tissues in microgravity. Nat. Med. 4, 901–907 (1998)

    Article  Google Scholar 

  • S. Wakitani, T. Kimura, A. Hirooka, T. Ochi, M. Yoneda, N. Yasui et al., Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J. Bone Joint Surg. Br. 71, 74–80 (1989)

    Google Scholar 

  • M. Wartenberg, F. Donmez, F.C. Ling, H. Acker, J. Hescheler, H. Sauer, Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. FASEB J. 15, 995–1005 (2001)

    Article  Google Scholar 

  • F. Yanagawa, H. Kaji, Y.H. Jang, H. Bae, D. Yanan, J. Fukuda, et al. Directed assembly of cell-laden microgels for building porous three-dimensional tissue constructs. J. Biomed. Mater. Res. A. (2011)

Download references

Acknowledgments

This study was supported in part by Grants-in-Aid (21700458) from the Ministry of Education, Science, Sports and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taisuke Masuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masuda, T., Takei, N., Nakano, T. et al. A microfabricated platform to form three-dimensional toroidal multicellular aggregate. Biomed Microdevices 14, 1085–1093 (2012). https://doi.org/10.1007/s10544-012-9713-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-012-9713-0

Keywords

Navigation