Skip to main content
Log in

Persister cells and the riddle of biofilm survival

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This review addresses a long standing puzzle in the life and death of bacterial populations—the existence of a small fraction of essentially invulnerable cells. Bacterial populations produce persisters, cells that neither grow nor die in the presence of bactericidal agents, and thus exhibit multidrug tolerance (MDT). The mechanism of MDT and the nature of persisters, which were discovered in 1944, have remained elusive. Our research has shown that persisters are largely responsible for the recalcitrance of infections caused by bacterial biofilms. The majority of infections in the developed world are caused by biofilms, which sparked a renewed interest in persisters. We developed a method to isolate persister cells, and obtained a gene expression profile of Escherichia coli persisters. The profile indicated an elevated expression of toxin-antitoxin modules and other genes that can block important cellular functions such as translation. Bactericidal antibiotics kill cells by corrupting the target function, such as translation. For example, aminoglycosides interrupt translation, producing toxic peptides. Inhibition of translation leads to a shutdown of other cellular functions as well, preventing antibiotics from corrupting their targets, which will give rise to tolerant persister cells. Overproduction of chromosomally-encoded “toxins” such as RelE, an inhibitor of translation, or HipA, causes a sharp increase in persisters. Deletion of the hipBA module produces a sharp decrease in persisters in both stationary and biofilm cells. HipA is thus the first validated persister/MDT gene. We conclude that the function of “toxins” is the exact opposite of the term, namely, to protect the cell from lethal damage. It appears that stochastic fluctuations in the levels of MDT proteins lead to formation of rare persister cells. Persisters are essentially altruistic cells that forfeit propagation in order to ensure survival of kin cells in the presence of lethal factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Licking, E. (1999) Business Week, 98–100.

  2. Lewis, K., Salyers A., Taber H., and Wax, R. (2001) Bacterial Resistance to Antimicrobials: Mechanisms, Genetics, Medical Practice and Public Health, Marcel Dekker, New York.

    Google Scholar 

  3. Tuomanen, E., Cozens, R., Tosch, W., Zak, O., and Tomasz, A. (1986) J. Gen. Microbiol., 132, 1297–1304.

    PubMed  CAS  Google Scholar 

  4. Gilbert, P., Collier, P. J., and Brown, M. R. (1990) Antimicrob. Agents Chemother., 34, 1865–1868.

    PubMed  CAS  Google Scholar 

  5. Gordon, C. A., Hodges, N. A., and Marriott, C. (1988) J. Antimicrob. Chemother., 22, 667–674.

    PubMed  CAS  Google Scholar 

  6. Nichols, W. W., Dorrington, S. M., Slack, M. P., and Walmsley, H. L. (1988) Antimicrob. Agents Chemother., 32, 518–523.

    PubMed  CAS  Google Scholar 

  7. Hoyle, B. D., Jass, J., and Costerton, J. W. (1990) J. Antimicrob. Chemother., 26, 1–5.

    PubMed  CAS  Google Scholar 

  8. Shigeta, M., Tanaka, G., Komatsuzawa, H., Sugai, M., Suginaka, H., and Usui, T. (1997) Chemotherapy, 43, 340–345.

    Article  PubMed  CAS  Google Scholar 

  9. Ishida, H., Ishida, Y., Kurosaka, Y., Otani, T., Sato, K., and Kobayashi, H. (1998) Antimicrob. Agents Chemother., 42, 1641–1645.

    PubMed  CAS  Google Scholar 

  10. Hassett, D. J., Ma, J. F., Elkins, J. G., McDermott, T. R., Ochsner, U. A., West, S. E., Huang, C. T., Fredericks, J., Burnett, S., Stewart, P. S., McFeters, G., Passador, L., and Iglewski, B. H. (1999) Mol. Microbiol., 34, 1082–1093.

    PubMed  CAS  Google Scholar 

  11. Elkins, J. G., Hassett, D. J., Stewart, P. S., Schweizer, H. P., and McDermott, T. R. (1999) Appl. Environ. Microbiol., 65, 4594–4600.

    PubMed  CAS  Google Scholar 

  12. Anderl, J. N., Franklin, M. J., and Stewart, P. S. (2000) Antimicrob. Agents Chemother., 44, 1818–1824.

    PubMed  CAS  Google Scholar 

  13. Stewart, P. S. (2003) J. Bacteriol., 185, 1485–1491.

    PubMed  CAS  Google Scholar 

  14. Gilbert, P., Alison, D. G., Rickhard, A., Sufya, N., Whyte, F., and McBain, A. J. (2001) in Biofilm Community Development: Chance or Necessity? (Gilbert, P., Allison, D. G., Brading, M., Verran, J., and Walker, J., eds.) Bioline Press, Cardiff.

    Google Scholar 

  15. Gilbert, P., Das, J., and Foley, I. (1997) Adv. Dent. Res., 11, 160–167.

    Article  PubMed  CAS  Google Scholar 

  16. Costerton, J. W., Stewart, P. S., and Greenberg, E. P. (1999) Science, 284, 1318–1322.

    PubMed  CAS  Google Scholar 

  17. Brooun, A., Liu, S., and Lewis, K. (2000) Antimicrob. Agents Chemother., 44, 640–646.

    PubMed  CAS  Google Scholar 

  18. Lewis, K. (2001) Antimicrob. Agents Chemother., 45, 999–1007.

    PubMed  CAS  Google Scholar 

  19. Bigger, J. W. (1944) Lancet, 11, 497–500.

    Google Scholar 

  20. Keren, I., Kaldalu, N., Spoering, A., Wang, Y., and Lewis, K. (2004) FEMS Microbiol. Lett., 230, 13–18.

    PubMed  CAS  Google Scholar 

  21. Spoering, A. L., and Lewis, K. (2001) J. Bacteriol., 183, 6746–6751.

    PubMed  CAS  Google Scholar 

  22. Keren, I., Shah, D., Spoering, A., Kaldalu, N., and Lewis, K. (2005) J. Bacteriol., in press.

  23. Leid, J. G., Shirtliff, M. E., Costerton, J. W., and Stoodley, A. P. (2002) Infect. Immun., 70, 6339–6345.

    PubMed  CAS  Google Scholar 

  24. Jesaitis, A. J., Franklin, M. J., Berglund, D., Sasaki, M., Lord, C. I., Bleazard, J. B., Duffy, J. E., Beyenal, M., and Lewanowski, Z. (2003) J. Immunol., 171, 4329–4339.

    PubMed  CAS  Google Scholar 

  25. Vuong, C., Voyich, J. M., Fischer, E. R., Braughton, K. R., Whitney, A. R., DeLeo, F. R., and Otto, M. (2004) Cell Microbiol., 6, 269–275.

    PubMed  CAS  Google Scholar 

  26. Moyed, H. S., and Bertrand, K. P. (1983) J. Bacteriol., 155, 768–775.

    PubMed  CAS  Google Scholar 

  27. Falla, T. J., and Chopra, I. (1998) Antimicrob. Agents Chemother., 42, 3282–3284.

    PubMed  CAS  Google Scholar 

  28. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., and Leibler, S. (2004) Science, 305, 1622–1625.

    PubMed  CAS  Google Scholar 

  29. Lewis, K. (1998) J. Theor. Biol., 193, 359–363.

    PubMed  CAS  Google Scholar 

  30. Tomasz, A., Albino, A., and Zanati, E. (1970) Nature, 227, 138–140.

    PubMed  CAS  Google Scholar 

  31. Rice, K. C., and Bayles, K. W. (2003) Mol. Microbiol., 50, 729–738.

    PubMed  CAS  Google Scholar 

  32. Selinger, D. W., Cheung, K. J., Mei, R., Johansson, E. M., Richmond, C. S., Blattner, F. R., Lockhart, D. J., and Church, G. M. (2000) Nat. Biotechnol., 18, 1262–1268.

    PubMed  CAS  Google Scholar 

  33. Kaldalu, N., Mei, R., and Lewis, K. (2004) Antimicrob. Agents Chemother., 48, 890–896.

    PubMed  CAS  Google Scholar 

  34. Wada, A. (1998) Genes Cells, 3, 203–208.

    PubMed  CAS  Google Scholar 

  35. Opperman, T., Murli, S., Smith, B. T., and Walker, G. C. (1999) Proc. Natl. Acad. Sci. USA, 96, 9218–9223.

    PubMed  CAS  Google Scholar 

  36. Walker, G. C. (1996) in Escherichia coli and Samonella. Cellular and Molecular Biology (Neidhardt, F. C., ed.) ASM Press, Washington, DC, pp. 1400–1416.

    Google Scholar 

  37. Brown, J. M., and Shaw, K. J. (2003) J. Bacteriol., 185, 6600–6608.

    PubMed  CAS  Google Scholar 

  38. Hayes, F. (2003) Science, 301, 1496–1499.

    PubMed  CAS  Google Scholar 

  39. Sat, B., Hazan, R., Fisher, T., Khaner, H., Glaser, G., and Engelberg-Kulka, H. (2001) J. Bacteriol., 183, 2041–2045.

    PubMed  CAS  Google Scholar 

  40. Pedersen, K., Christensen, S. K., and Gerdes, K. (2002) Mol. Microbiol., 45, 501–510.

    PubMed  CAS  Google Scholar 

  41. Christensen, S. K., Pedersen, K., Hansen, F. G., and Gerdes, K. (2003) J. Mol. Biol., 332, 809–819.

    PubMed  CAS  Google Scholar 

  42. Pedersen, K., Zavialov, A. V., Pavlov, M. Y., Elf, J., Gerdes, K., and Ehrenberg, M. (2003) Cell, 112, 131–140.

    PubMed  CAS  Google Scholar 

  43. Moyed, H. S., and Broderick, S. H. (1986) J. Bacteriol., 166, 399–403.

    PubMed  CAS  Google Scholar 

  44. Black, D. S., Kelly, A. J., Mardis, M. J., and Moyed, H. S. (1991) J. Bacteriol., 173, 5732–5739.

    PubMed  CAS  Google Scholar 

  45. Black, D. S., Irwin, B., and Moyed, H. S. (1994) J. Bacteriol., 176, 4081–4091.

    PubMed  CAS  Google Scholar 

  46. Falla, T. J., and Chopra, I. (1999) Microbiology, 145, 515–516.

    Article  PubMed  CAS  Google Scholar 

  47. Lewis, K. (2000) Microbiol. Mol. Biol. Rev., 64, 503–514.

    PubMed  CAS  Google Scholar 

  48. Spudich, J. L., and Koshland, D. E., Jr. (1976) Nature, 262, 467–471.

    PubMed  CAS  Google Scholar 

  49. Korobkova, E., Emonet, T., Vilar, J. M., Shimizu, T. S., and Cluzel, P. (2004) Nature, 428, 574–578.

    PubMed  CAS  Google Scholar 

  50. Mah, T. F., Pitts, B., Pellock, B., Walker, G. C., Stewart, P. S., and O’Toole, G. A. (2003) Nature, 426, 306–310.

    PubMed  CAS  Google Scholar 

  51. Drenkard, E., and Ausubel, F. M. (2002) Nature, 416, 740–743.

    PubMed  CAS  Google Scholar 

  52. Mukamolova, G. V., Turapov, O. A., Young, D. I., Kaprelyants, A. S., Kell, D. B., and Young, M. (2002) Mol. Microbiol., 46, 623–635.

    PubMed  CAS  Google Scholar 

  53. Tufariello, J. M., Chan, J., and Flynn, J. L. (2003) Lancet Infect. Dis., 3, 578–590.

    PubMed  CAS  Google Scholar 

  54. Colwell, R. R., and Grimes, D. J. (2000) Nonculturable Microorganisms in the Environment, American Society for Microbiology, Washington, DC.

    Google Scholar 

  55. Bogosian, G., and Bourneuf, E. V. (2001) EMBO Rep., 2, 770–774.

    PubMed  CAS  Google Scholar 

  56. Kaeberlein, T., Lewis, K., and Epstein, S. S. (2002) Science, 296, 1127–1129.

    PubMed  CAS  Google Scholar 

  57. Skulachev, V. P. (2002) Ann. N. Y. Acad. Sci., 959, 214–237.

    Article  PubMed  CAS  Google Scholar 

  58. Hazan, R., Sat, B., and Engelberg-Kulka, H. (2004) J. Bacteriol., 186, 3663–3669.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 327–336.

Original Russian Text Copyright © 2005 by Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, K. Persister cells and the riddle of biofilm survival. Biochemistry (Moscow) 70, 267–274 (2005). https://doi.org/10.1007/s10541-005-0111-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10541-005-0111-6

Key words

Navigation