Skip to main content
Log in

A role for ferritin in the antioxidant system in coffee cell cultures

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Iron (Fe) is an essential nutrient for plants, but it can generate oxidative stress at high concentrations. In this study, Coffea arabica L. cell suspension cultures were exposed to excess Fe (60 and 240 μM) to investigate changes in the gene expression of ferritin and antioxidant enzymes. Iron content accumulated during cell growth, and Western blot analysis showed an increase of ferritin in cells treated with Fe. The expression of two ferritin genes retrieved from the Brazilian coffee EST database was studied. CaFER1, but not CaFER2, transcripts were induced by Fe exposure. Phylogenetic analysis revealed that CaFER1 is not similar to CaFER2 or to any ferritin that has been characterised in detail. The increase in ferritin gene expression was accompanied by an increase in the activity of antioxidant enzymes. Superoxide dismutase, guaiacol peroxidase, catalase, and glutathione reductase activities increased in cells grown in the presence of excess Fe, especially at 60 μM, while the activity of glutathione S-transferase decreased. These data suggest that Fe induces oxidative stress in coffee cell suspension cultures and that ferritin participates in the antioxidant system to protect cells against oxidative damage. Thus, cellular Fe concentrations must be finely regulated to avoid cellular damage most likely caused by increased oxidative stress induced by Fe. However, transcriptional analyses indicate that ferritin genes are differentially controlled, as only CaFER1 expression was responsive to Fe treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrews SC (2010) The ferritin-like superfamily: evolution of the biological iron storeman from a rubrerythrin-like ancestor. Biochim Biophys Acta 1800:691–705

    PubMed  CAS  Google Scholar 

  • Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 1790:589–599

    PubMed  CAS  Google Scholar 

  • Ayres M, Ayres Jr M, Ayres DL, Santos AS (2003) BioEstat 3.0 Mamirauá Civil Society, Mamirauá

  • Azevedo RA (1998) Response of antioxidant to transfer from elevated carbon dioxide air and ozone fumigation, in leaves and roots of wild-tipe and a catalase-deficient mutant of barley. Physiol Plant 104:280–292

    Article  CAS  Google Scholar 

  • Boughammoura A, Franza T, Dellagi A, Roux C, Matzanke-Markstein B, Expert D (2007) Ferritins, bacterial virulence and plant defence. Biometals 20:347–353

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Briat J-F, Lebrun M (1999) Plant responses to metal toxicity. CR Acad Sci, Ser 322:43–54

    CAS  Google Scholar 

  • Briat JF, Fobis-Loisy I, Grignon N, Lobreaux S, Pascal N, Savino G, Thoiron S, von Wiren N, Van Wuytswinkel O (1995) Cellular and molecular aspects of iron metabolism in plants. Biol Cell 84:69–81

    Article  CAS  Google Scholar 

  • Briat JF, Lobréaux S, Grignon N, Vansuyt G (1999) Regulation of plant ferritin synthesis: how and why. Cell Mol Life Sci 56:155–166

    Article  PubMed  CAS  Google Scholar 

  • Briat J-F, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F (2009) New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot 105(5):811–822. doi:10.1093/aob/mcp128

    Article  PubMed  Google Scholar 

  • Caro A, Puntarulo S (1996) Effect of in vivo iron supplementation on oxygen radical production by soybean roots. Biochim Biophys Acta, Gen Subj 1291:245–251

    Article  CAS  Google Scholar 

  • Chiancone E, Ceci P (2010) The multifaceted capacity of Dps proteins to combat bacterial stress conditions: detoxification of iron and hydrogen peroxide and DNA binding. Biochim Biophys Acta, Gen Subj 1800:798–805

    Article  CAS  Google Scholar 

  • Déak M, Horváth GV, Davletova S, Török K, Sass L, Vass I, Barna B, Király Z, Dudits D (1999) Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol 17:192–196

    Article  PubMed  Google Scholar 

  • Donnini S, Castagna A, Ranieri A, Zocchi G (2009) Differential responses in pear and quince genotypes induced by Fe deficiency and bicarbonate. J Plant Physiol 166:1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Filippi SB, Azevedo RA, Sodek L, Mazzafera P (2007) Allantoin has a limited role as nitrogen source in cultured coffee cells. J Plant Physiol 164:544–552

    Article  PubMed  CAS  Google Scholar 

  • Fobis-Loisy I, Loridon K, Lobreaux S, Lebrun M, Briat JF (1995) Structure and differential expression of 2 maize ferritin genes in response to iron and abscisic-acid. Eur J Biochem 231:609–619

    Article  PubMed  CAS  Google Scholar 

  • Gaymard F, Boucherez J, Briat JF (1996) Characterization of a ferritin mRNA from Arabidopsis thaliana accumulated in response to iron through an oxidative pathway independent of abscisic acid. Biochem J 318:67–73

    PubMed  CAS  Google Scholar 

  • Gomes-Junior RA, Moldes CA, Delite FS, Gratão PL, Mazzafera P, Lea PJ, Azevedo RA (2006a) Nickel elicits a fast antioxidant response in Coffea arabica cells. Plant Physiol Biochem 44:420–429

    Article  PubMed  CAS  Google Scholar 

  • Gomes-Junior RA, Moldes CA, Delite FS, Pompeu GB, Gratão PL, Mazzafera P, Lea PJ, Azevedo RA (2006b) Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65:1330–1337

    Article  PubMed  CAS  Google Scholar 

  • Gomes-Junior RA, Gratão PL, Gaziola SA, Mazzafera P, Lea PJ, Azevedo RA (2007) Selenium-induced oxidative stress in coffee cell suspension cultures. Funct Plant Biol 34:449–456

    Article  CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  PubMed  CAS  Google Scholar 

  • Goto F, Yoshihara T, Masuda T, Takaiwa F (2001) Genetic improvement of iron content and stress adaptation in plants using ferritin gene. Biotechnol Gen Eng Rev 18:351–371

    CAS  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  Google Scholar 

  • Gratão PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA (2008) Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Ann Appl Biol 153:321–333

    Article  Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta, Mol Cell Res 1763:595–608

    Article  PubMed  CAS  Google Scholar 

  • Haas JD, Beard JL, Murray-Kolb LE, del Mundo AM, Felix A, Gregorio GB (2005) Iron-biofortified rice improves the iron stores of nonanemic filipino women. J Nutr 135:2823–2830

    PubMed  CAS  Google Scholar 

  • Habig WH, Jakoby WB (1981) Glutathione S-transferases (rat and human). Methods Enzymol 77:218–231

    Article  PubMed  CAS  Google Scholar 

  • Haikarainen T, Papageorgiou A (2010) Dps-like proteins: structural and functional insights into a versatile protein family. Cell Mol Life Sci 67:341–351

    Article  PubMed  CAS  Google Scholar 

  • Hintze KJ, Theil EC (2005) DNA and mRNA elements with complementary responses to hemin, antioxidant inducers, and iron control ferritin-l expression. Proc Natl Acad Sci USA 102:15048–15052

    Article  PubMed  CAS  Google Scholar 

  • Hintze KJ, Theil EC (2006) Cellular regulation and molecular interactions of the ferritins. Cell Mol Life Sci 63:591–600

    Article  PubMed  CAS  Google Scholar 

  • Kampfenkel K, Vanmontagu M, Inze D (1995) Effects of iron excess on Nicotiana plumbaginifolia plants—implications to oxidative stress. Plant Physiol 107:725–735

    PubMed  CAS  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Tewari R, Sharma P (2008a) Modulation of copper toxicity-induced oxidative damage by excess supply of iron in maize plants. Plant Cell Rep 27:399–409

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008b) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  PubMed  CAS  Google Scholar 

  • Lepelley M, Cheminade G, Tremillon N, Simkin A, Caillet V, McCarthy J (2007) Chlorogenic acid synthesis in coffee: an analysis of CGA content and real-time RT-PCR expression of HCT, HQT, C3H1, and CCoAOMT1 genes during grain development in C. canephora. Plant Sci 172:978–996

    Article  CAS  Google Scholar 

  • Lescure AM, Proudhon D, Pesey H, Ragland M, Theil EC, Briat JF (1991) Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc Natl Acad Sci USA 88:8222–8226

    Article  PubMed  CAS  Google Scholar 

  • Lin CW, Mueller LA, Mc Carthy J, Crouzillat D, Petiard V, Tanksley SD (2005) Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts. Theor Appl Gen 112:114–130

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Estévez M, Loyola-Vargas VM, Hernández-Sotomayor SMT (2001a) Aluminum increases phosphorylation of particular proteins in cellular suspension cultures of coffee (Coffea arabica). J Plant Physiol 158:1375–1379

    Article  Google Scholar 

  • Martínez-Estévez M, Muñoz-Sánchez JA, Loyola-Vargas VM, Hernández-Sotomayor SMT (2001b) Modification of the culture medium to produce aluminum toxicity in cell suspensions of coffee (Coffea arabica L.). Plant Cell Rep 20:469–474

    Article  Google Scholar 

  • Mata CG, Lamattina L, Cassia RO (2001) Involvement of iron and ferritin in the potato–Phytophthora infestans interaction. Eur J Plant Pathol 107:557–562

    Article  CAS  Google Scholar 

  • Murashige C, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Neuenschwander B, Baumann TW (1992) A novel type of somatic embryogenesis in Coffea arabica. Plant Cell Rep 110:608–612

    Google Scholar 

  • Nobile PM, Quecini V, Bazzo B, Quiterio G, Mazzafera P, Colombo CA (2010) Transcriptional profile of genes involved in the biosynthesis of phytate and ferritin in Coffea. J Agric Food Chem 58(6):3479–3487

    Article  PubMed  CAS  Google Scholar 

  • Orino K, Lehman L, Tsuji Y, Ayaki H, Torti SV, Torti FM (2001) Ferritin and the response to oxidative stress. Biochem J 357:241–247

    Article  PubMed  CAS  Google Scholar 

  • Petit JM, Briat JF, Lobreaux S (2001) Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem J 359:575–582

    Article  PubMed  CAS  Google Scholar 

  • Puthoff DP, Sardesai N, Subramanyam S, Nemacheck JA, Williams CE (2005) Hfr-2, a wheat cytolytic toxin-like gene, is upregulated by virulent Hessian fly larval feeding. Mol Plant Pathol 6:411–423

    Article  PubMed  CAS  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  PubMed  CAS  Google Scholar 

  • Ravet K, Touraine B, Boucherez J, Briat J-F, Gaymard F, Cellier F (2009) Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J 57:400–412

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Salmona J, Dussert S, Descroix F, de Kochko A, Bertrand B, Joet T (2008) Deciphering transcriptional networks that govern Coffea arabica seed development using combined cDNA array and real-time RT-PCR approaches. Plant Mol Biol 66:105–124

    Article  PubMed  CAS  Google Scholar 

  • Silveira VCd, Fadanelli C, Sperotto RA, Stein RJ, Basso LA, Santos DS, Vaz Junior IdS, Dias JF, Fett JP (2009) Role of ferritin in the rice tolerance to iron overload. Sci Agric 66:549–555

    Google Scholar 

  • Strozycki PM, Skapska A, Szczesniak K, Sobieszczuk E, Briat JF, Legocki AB (2003) Differential expression and evolutionary analysis of the three ferritin genes in the legume plant Lupinus luteus. Physiol Plant 118:380–389

    Article  CAS  Google Scholar 

  • Tsuji Y, Ayaki H, Whitman SP, Morrow CS, Torti SV, Torti FM (2000) Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress. Mol Cell Biol 20:5818–5827

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7): research0034

    Google Scholar 

  • Vieira LGE, Andrade AC, Colombo CA, Moraes AHA, Metha A, Oliveira AC, Labate CA, Marino CL, Monteiro-Vitorello CB, Monte DC, Giglioti E, Kimura ET, Romano E, Kuramae EE, Lemos EGM, Almeida ERP, Jorge EC, Albuquerque EVS, Silva FR, Vinecky F, Sawazaki HE, Dorry HFA, Carrer H, Abreu IN, Batista JAN, Teixeira JB, Kitajima JP, Xavier KG, Lima LM, Camargo LEA, Pereira LFP, Coutinho LL, Lemos MVF, Romano MR, Machado MA, Costa MMC, Sá MFG, Goldman MHS, Ferro MIT, Tinoco MLP, Oliveira MC, Van Sluys M-A, Shimizu MM, Maluf MP, Eira MTS, Guerreiro Filho O, Arruda P, Mazzafera P, Mariani PDSC, Oliveira RLB, Harakava R, Balbao SF, Tsai SM, Mauro SMZ, Santos SN, Siqueira WJ, Costa GGL, Formighieri EF, Carazzolle MF, Pereira GAG (2006) Brazilian coffee genome project: an EST-based genomic resource. Braz J Plant Physiol 18:95–108

    CAS  Google Scholar 

  • Wei JZ, Theil EC (2000) Identification and characterization of the iron regulatory element in the ferritin gene of a plant (soybean). J Biol Chem 275:17488–17493

    Article  PubMed  CAS  Google Scholar 

  • Zancani M, Peresson C, Biroccio A, Federici G, Urbani A, Murgia I, Soave C, Micali F, Vianello A, Macrì F (2004) Evidence for the presence of ferritin in plant mitochondria. Eur J Biochem 271:3657–3664

    Article  PubMed  CAS  Google Scholar 

  • Zhao G, Bou-Abdallah F, Arosio P, Levi S, Janus-Chandler C, Chasteen ND (2003) Multiple pathways for mineral core formation in mammalian apoferritin. the role of hydrogen peroxide. Biochemistry 42:3142–3150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Janette Palma Fett (Universidade Federal do Rio Grande do Sul) for providing the polyclonal anti-ferritin antibody used in this study. This work was supported by grants from Fundação de Amparo a Pesquisa do Estado de São Paulo (Fapesp) and Conselho Nacional de Desenvolvimento Científico e Tecnológico Brasil (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Mazzafera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bottcher, A., Nobile, P.M., Martins, P.F. et al. A role for ferritin in the antioxidant system in coffee cell cultures. Biometals 24, 225–237 (2011). https://doi.org/10.1007/s10534-010-9388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9388-z

Keywords

Navigation