Skip to main content
Log in

Yersinia ironomics: comparison of iron transporters among Yersiniapestis biotypes and its nearest neighbor, Yersinia pseudotuberculosis

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Although Yersinia pestis epidemic biovars and Yersinia pseudotuberculosis are recently diverged, highly related species, they cause different diseases via disparate transmission routes. Since iron transport systems are important for iron acquisition from hosts and for survival in the environment, we have analyzed potential iron transport systems encoded by epidemic and non-epidemic or endemic strains of Y. pestis as well as two virulent Y. pseudotuberculosis strains. Computational biology analysis of these genomes showed a high degree of identity/similarity among 16 proven or possible iron/heme transporters identified. Of these, 7 systems were essentially the same in all seven genomes analyzed. The remaining 9 loci had 2–6 genetic variations among these genomes. Two untested, potential siderophore-dependent systems appear intact in Y. pseudotuberculosis but are disrupted or absent in all the endemic Y. pestis strains as well as the epidemic strains from the antiqua and mediaevalis biovars. Only one of these two loci are obviously disrupted in Y. pestis CO92 (epidemic orientalis biovar). Experimental studies failed to identify a role for hemin uptake systems in the virulence of pneumonic plague and suggest that Y. pestis CO92 does not make a siderophore other than Ybt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Achtman M, Morelli G, Zhu P, Wirth T, Diehl I, Kusecek B, Vogler AJ, Wagner DM, Allender CJ, Easterday WR, Chenal-Francisque V, Worsham P, Thomson NR, Parkhill J, Lindler LE, Carniel E, Keim P (2004) Microevolution and history of the plague bacillus, Yersinia pestis. PNAS 101:17837–17842

    Article  CAS  PubMed  Google Scholar 

  • Anisimov AP, Lindler LE, Pier GB (2004) Intraspecific diversity of Yersinia pestis. Clin Microbiol Rev 17:434–464

    Article  CAS  PubMed  Google Scholar 

  • Ansari MZ, Yadav G, Gokhale RS, Mohanty D (2004) NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res 32:W405–W413

    Article  CAS  PubMed  Google Scholar 

  • Bearden SW, Perry RD (1999) The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol 32:403–414

    Article  CAS  PubMed  Google Scholar 

  • Bearden SW, Fetherston JD, Perry RD (1997) Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect Immun 65:1659–1668

    CAS  PubMed  Google Scholar 

  • Bearden SW, Staggs TM, Perry RD (1998) An ABC transporter system of Yersinia pestis allows utilization of chelated iron by Escherichia coli SAB11. J Bacteriol 180:1135–1147

    CAS  PubMed  Google Scholar 

  • Beesley ED, Brubaker RR, Janssen WA, Surgalla MJ (1967) Pesticins. III. Expression of coagulase and mechanism of fibrinolysis. J Bacteriol 94:19–26

    Article  CAS  PubMed  Google Scholar 

  • Bobrov AG, Geoffroy VA, Perry RD (2002) Yersiniabactin production requires the thioesterase domain of HMWP2 and YbtD, a putative phosphopantetheinylate transferase. Infect Immun 70:4204–4214

    Article  CAS  PubMed  Google Scholar 

  • Brubaker RR (1969) Mutation rate to nonpigmentation in Pasteurella pestis. J Bacteriol 98:1404–1406

    CAS  PubMed  Google Scholar 

  • Brubaker RR (2004) The recent emergence of plague: a process of felonious evolution. Microb Ecol 47:293–299

    Article  CAS  PubMed  Google Scholar 

  • Buchrieser C, Prentice M, Carniel E (1998) The 102-kilobase unstable region of Yersinia pestis comprises a high-pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement. J Bacteriol 180:2321–2329

    CAS  PubMed  Google Scholar 

  • Burrows TW, Bacon GA (1960) V and W antigens in strains of Pasteurella pseudotuberculosis. Br J Exp Pathol 41:38–44

    CAS  PubMed  Google Scholar 

  • Byers BR, Arceneaux EL (1998) Microbial iron transport: iron acquisition by pathogenic microorganisms. In: Sigel A, Sigel H (eds) Metal ions in biological systems: iron transport and storage in microorganisms, plants, and animals. Marcell Dekker, Inc., New York, pp 37–66

    Google Scholar 

  • Cao J, Woodhall MR, Alvarez J, Cartron ML, Andrews SC (2007) EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157:H7. Mol Microbiol 65:857–875

    Article  CAS  PubMed  Google Scholar 

  • Carniel E, Guiyoule A, Guilvout I, Mercereau-Puijalon O (1992) Molecular cloning, iron-regulation and mutagenesis of the irp2 gene encoding HMWP2, a protein specific for the highly pathogenic Yersinia. Mol Microbiol 6:379–388

    Article  CAS  PubMed  Google Scholar 

  • Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC (2006) Feo—transport of ferrous iron into bacteria. Biometals 19:143–157

    Article  CAS  PubMed  Google Scholar 

  • Cescau S, Cwerman H, Létoffé S, Delepelaire P, Wandersman C, Biville F (2007) Heme acquisition by hemophores. Biometals 20:603–613

    Article  CAS  PubMed  Google Scholar 

  • Chain PSG, Carniel E, Larimer FW, Lamerdin J, Stoutland PO, Regala WM, Georgescu AM, Vergez LM, Land ML, Motin VL, Brubaker RR, Fowler J, Hinnebusch J, Marceau M, Medigue C, Simonet M, Chenal-Francisque V, Souza B, Dacheux D, Elliott JM, Derbise A, Hauser LJ, Garcia E (2004) Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. PNAS 101:13826–13831

    Article  CAS  PubMed  Google Scholar 

  • Chain PSG, Hu P, Malfatti SA, Radnedge L, Larimer F, Vergez LM, Worsham P, Chu MC, Andersen GL (2006) Complete genome sequence of Yersinia pestis strains Antiqua and Nepal516: evidence of gene reduction in an emerging pathogen. J Bacteriol 188:4453–4463

    Article  PubMed  Google Scholar 

  • Challis GL (2005) A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. ChemBioChem 6:601–611

    Article  CAS  PubMed  Google Scholar 

  • Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249

    Article  CAS  PubMed  Google Scholar 

  • Crosa JH, Mey AR, Payne SM (2004) Iron transport in bacteria. ASM Press, Washington

    Google Scholar 

  • Deng W, Burland V, Plunkett G III, Boutin A, Mayhew GF, Liss P, Perna NT, Rose DJ, Mau B, Zhou S, Schwartz DC, Fetherston JD, Lindler LE, Brubaker RR, Plano GV, Straley SC, McDonough KA, Nilles ML, Matson JS, Blattner FR, Perry RD (2002) Genome sequence of Yersinia pestis KIM. J Bacteriol 184:4601–4611

    Article  CAS  PubMed  Google Scholar 

  • Di Lorenzo M, Stork M, Alice AF, López CS, Crosa JH (2004) Vibrio. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington, pp 241–255

    Google Scholar 

  • Dubbels BL, DiSpirito AA, Morton JD, Semrau JD, Neto JNE, Bazylinski DA (2004) Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. Microbiology 150:2931–2945

    Article  CAS  PubMed  Google Scholar 

  • Fetherston JD, Perry RD (1994) The pigmentation locus of Yersinia pestis KIM6 + is flanked by an ins Perry, et al. 1990rtion sequence and includes the structural genes for pesticin sensitivity and HMWP2. Mol Microbiol 13:697–708

    Article  CAS  PubMed  Google Scholar 

  • Fetherston JD, Schuetze P, Perry RD (1992) Loss of the pigmentation phenotype in Yersinia pestis is due to the spontaneous deletion of 102 kb of chromosomal DNA which is flanked by a repetitive element. Mol Microbiol 6:2693–2704

    Article  CAS  PubMed  Google Scholar 

  • Fetherston JD, Lillard JW Jr, Perry RD (1995) Analysis of the pesticin receptor from Yersinia pestis: role in iron-deficient growth and possible regulation by its siderophore. J Bacteriol 177:1824–1833

    CAS  PubMed  Google Scholar 

  • Fetherston JD, Bertolino VJ, Perry RD (1999) YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis. Mol Microbiol 32:289–299

    Article  CAS  PubMed  Google Scholar 

  • Forman S, Nagiec MJ, Abney J, Perry RD, Fetherston JD (2007) Analysis of the aerobactin and ferric hydroxamate uptake systems of Yersinia pestis. Microbiology 153:2332–2341

    Article  CAS  PubMed  Google Scholar 

  • Forman S, Wulff CR, Myers-Morales T, Cowan C, Perry RD, Straley SC (2008) yadBC of Yersinia pestis, a new virulence determinant for bubonic plague. Infect Immun 76:578–587

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Zhou D, Li Y, Guo Z, Han Y, Song Y, Zhai J, Du Z, Wang X, Lu J, Yang R (2008) The iron-responsive Fur regulon in Yersinia pestis. J Bacteriol 190:3063–3075

    Article  CAS  PubMed  Google Scholar 

  • Gong S, Bearden SW, Geoffroy VA, Fetherston JD, Perry RD (2001) Characterization of the Yersinia pestis Yfu ABC iron transport system. Infect Immun 67:2829–2837

    Article  Google Scholar 

  • Grass G, Otto M, Fricke B, Haney CJ, Rensing C, Nies DH, Munkelt D (2005) FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Archives Microbiol 183:9–18

    Article  CAS  Google Scholar 

  • Große C, Scherer J, Koch D, Otto M, Taudte N, Grass G (2006) A new ferrous iron-uptake transporter, EfeU (YcdN), from Escherichia coli. Mol Microbiol 62:120–131

    Article  PubMed  Google Scholar 

  • Guerinot ML (1994) Microbial iron transport. Annu Rev Microbiol 48:743–772

    Article  CAS  PubMed  Google Scholar 

  • Hantke K (2004) Ferrous iron transport. In: Crosa JH, Mey AR, Payne SM (eds) Iron Transport in Bacteria. ASM Press, Washington, pp 178–184

    Google Scholar 

  • Hare JM, McDonough KA (1999) High-frequency RecA-dependent and -independent mechanisms of Congo red binding mutations in Yersinia pestis. J Bacteriol 181:4896–4904

    CAS  PubMed  Google Scholar 

  • Higuchi K, Smith JL (1961) Studies on the nutrition and physiology of Pasteurella pestis. VI. A differential plating medium for the estimation of the mutation rate to avirulence. J Bacteriol 81:605–608

    CAS  PubMed  Google Scholar 

  • Hinchliffe SJ, Isherwood KE, Stabler RA, Prentice MB, Rakin A, Nichols RA, Oyston PCF, Hinds J, Titball RW, Wren BW (2003) Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis. Genome Res 13:2018–2029

    Article  CAS  PubMed  Google Scholar 

  • Hinnebusch BJ (2004) The evolution of flea-borne transmission of Yersinia pestis. In: Carniel E, Hinnebusch BJ (eds) Yersinia molecular and cellular biology. Horizon Bioscience, Norfolk, pp 49–73

    Google Scholar 

  • Hornung JM, Jones HA, Perry RD (1996) The hmu locus of Yersinia pestis is essential for utilization of free haemin and haem-protein complexes as iron sources. Mol Microbiol 20:725–739

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Elliott J, McCready P, Skowronski E, Garnes J, Kobayashi A, Brubaker RR, Garcia E (1998) Structural organization of virulence-associated plasmids of Yersinia pestis. J Bacteriol 180:5192–5202

    CAS  PubMed  Google Scholar 

  • Karlyshev AV, Oyston PCF, Williams K, Clark GC, Titball RW, Winzeler EA, Wren BW (2001) Application of high-density array-based signature-tagged mutagenesis to discover novel Yersinia virulence-associated genes. Infect Immun 69:7810–7819

    Article  CAS  PubMed  Google Scholar 

  • Kirillina O, Bobrov AG, Fetherston JD, Perry RD (2006) A hierarchy of iron uptake systems: Yfu and Yiu are functional in Yersinia pestis. Infect Immun 74:6171–6178

    Article  CAS  PubMed  Google Scholar 

  • Koch D, Nies DH, Grass G (2008) Characterization of a novel iron uptake system from uropathogenic Escherichia coli strain F11. In: BioMetals 2008 (6th Intl Biometals Symp), Santiago de Compostela, Spain, 14–18 July 2008, p 102

  • Lathem WW, Crosby SD, Miller VL, Goldman WE (2005) Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity. PNAS 102:17786–17791

    Article  CAS  PubMed  Google Scholar 

  • Lesic B, Carniel E (2004) The high pathogenicity island: a broad-host-range pathogenicity island. In: Carniel E, Hinnebusch BJ (eds) Yersinia molecular and cellular biology. Horizon Bioscience, Norfolk, pp 285–306

    Google Scholar 

  • Lindler LE, Plano GV, Burland V, Mayhew GF, Blattner FR (1998) Complete DNA sequence and detailed analysis of the Yersinia pestis KIM5 plasmid encoding murine toxin and capsular antigen. Infect Immun 66:5731–5742

    CAS  PubMed  Google Scholar 

  • Lorange EA, Race BL, Sebbane F, Hinnebusch JB (2005) Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J Infect Dis 191:1907–1912

    Article  PubMed  Google Scholar 

  • Lucier TS, Brubaker RR (1992) Determination of genome size, macrorestriction pattern polymorphism, and nonpigmentation-specific deletion in Yersinia pestis by pulsed-field gel electrophoresis. J Bacteriol 174:2078–2086

    CAS  PubMed  Google Scholar 

  • Mey AR, Wyckoff EE, Oglesby AG, Rab E, Taylor RK, Payne SM (2002) Identification of the Vibrio cholerae enterobactin receptors VctA and IrgA: IrgA is not required for virulence. Infect Immun 70:3419–3426

    Article  CAS  PubMed  Google Scholar 

  • Mietzner TA, Morse SA (1994) The role of iron-binding proteins in the survival of pathogenic bacteria. Annu Rev Nutr 14:471–493

    Article  CAS  PubMed  Google Scholar 

  • Miller MC, Parkin S, Fetherston JD, Perry RD, DeMoll E (2006) Crystal structure of ferric-yersiniabactin, a virulence factor of Yersinia pestis. J Inorg Biochm 100:1495–1500

    Article  CAS  Google Scholar 

  • Ollinger J, Song K-B, Antelmann H, Hecker M, Helmann JD (2006) Role of the Fur regulon in iron transport in Bacillus subtilis. J Bacteriol 188:3664–3673

    Article  CAS  PubMed  Google Scholar 

  • Papp-Wallace KM, Maguire ME (2006) Manganese transport and the role of manganese in virulence. Annu Rev Microbiol 60:187–209

    Article  CAS  PubMed  Google Scholar 

  • Parkhill J, Wren BW, Thomson NR, Titball RW, Holden MT, Prentice MB, Sebaihia M, James KD, Churcher C, Mungall KL, Baker S, Basham D, Bentley SD, Brooks K, Cerdeno-Tarraga AM, Chillingworth T, Cronin A, Davies RM, Davis P, Dougan G, Feltwell T, Hamlin N, Holroyd S, Jagels K, Karlyshev AV, Leather S, Moule S, Oyston PC, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG (2001) Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413:523–527

    Article  CAS  PubMed  Google Scholar 

  • Payne SM, Mey AR (2004) Pathogenic Escherichia coli, Shigella. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington, pp 199–218

    Google Scholar 

  • Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernández FJ (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Meth 70:127–131

    Article  Google Scholar 

  • Perkins-Balding D, Rasmussen A, Stojiljkovic I (2004) Bacterial heme and hemoprotein receptors. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington, pp 66–85

    Google Scholar 

  • Perry RD (2004) Yersinia. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington, pp 219–240

    Google Scholar 

  • Perry RD, Brubaker RR (1983) Vwa+ phenotype of Yersinia enterocolitica. Infect Immun 40:166–171

    CAS  PubMed  Google Scholar 

  • Perry RD, Fetherston JD (1997) Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10:35–66

    CAS  PubMed  Google Scholar 

  • Perry RD, Fetherston JD (2004) Iron and heme uptake systems. In: Carniel E, Hinnebusch BJ (eds) Yersinia molecular and cellular biology. Horizon Bioscience, Norfolk, pp 257–283

    Google Scholar 

  • Perry RD, Pendrak ML, Schuetze P (1990) Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis. J Bacteriol 172:5929–5937

    CAS  PubMed  Google Scholar 

  • Perry RD, Straley SC, Fetherston JD, Rose DJ, Gregor J, Blattner FR (1998) DNA sequencing and analysis of the low-Ca2+-response plasmid pCD1 of Yersinia pestis KIM5. Infect Immun 66:4611–4623

    CAS  PubMed  Google Scholar 

  • Perry RD, Balbo PB, Jones HA, Fetherston JD, DeMoll E (1999) Yersiniabactin from Yersinia pestis: biochemical characterization of the siderophore and its role in iron transport and regulation. Microbiology 145:1181–1190

    Article  CAS  PubMed  Google Scholar 

  • Perry RD, Abney J, Mier I Jr, Lee Y, Bearden SW, Fetherston JD (2003a) Regulation of the Yersinia pestis Yfe and Ybt iron transport systems. Adv Exp Med Biol 529:275–283

    Article  PubMed  Google Scholar 

  • Perry RD, Shah J, Bearden SW, Thompson JM, Fetherston JD (2003b) Yersinia pestis TonB: role in iron, heme and hemoprotein utilization. Infect Immun 71:4159–4162

    Article  CAS  PubMed  Google Scholar 

  • Perry RD, Bobrov AG, Kirillina O, Jones HA, Pedersen LL, Abney J, Fetherston JD (2004) Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J Bacteriol 186:1638–1647

    Article  CAS  PubMed  Google Scholar 

  • Perry RD, Mier I Jr, Fetherston JD (2007) Roles of the Yfe and Feo transporters of Yersinia pestis in iron uptake and intracellular growth. Biometals 20:699–703

    Article  CAS  PubMed  Google Scholar 

  • Reed LJ, Muench H (1938) A simple method for estimating fifty percent endpoints. Am J Hyg 27:493–497

    Google Scholar 

  • Rossi M-S, Fetherston JD, Létoffé S, Carniel E, Perry RD, Ghigo J-M (2001) Identification and characterization of the hemophore-dependent heme acquisition system of Yersinia pestis. Infect Immun 69:6707–6717

    Article  CAS  PubMed  Google Scholar 

  • Rossi M-S, Paquelin A, Ghigo JM, Wandersman C (2003) Haemophore-mediated signal transduction across the bacterial cell envelope in Serratia marcescens: the inducer and the transported substrate are different molecules. Mol Microbiol 48:1467–1489

    Article  CAS  PubMed  Google Scholar 

  • Runyen-Janecky LJ, Reeves SA, Gonzales EG, Payne SM (2003) Contribution of the Shigella flexneri Sit, Iuc, and Feo iron acquisition systems to iron acquisition in vitro and in cultured cells. Infect Immun 71:1919–1928

    Article  CAS  PubMed  Google Scholar 

  • Schaible UE, Kaufmann SHE (2004) Iron and microbial infection. Nat Rev Microbiol 2:946–953

    Article  CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Tong Z, Wang J, Wang L, Guo Z, Han Y, Zhang J, Pei D, Zhou D, Qin H, Pang X, Han Y, Zhai J, Li M, Cui B, Qi Z, Jin L, Dai R, Chen F, Li S, Ye C, Du Z, Lin W, Wang J, Yu J, Yang H, Wang J, Huang P, Yang R (2004) Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. DNA Res 11:179–197

    Article  CAS  PubMed  Google Scholar 

  • Straley SC, Starnbach MN (2000) Yersinia: strategies that thwart immune defenses. In: Cunningham MW, Fujinami RS (eds) Effects of microbes on the immune system. Lippincott Williams & Wilkins, Philadelphia, pp 71–92

    Google Scholar 

  • Surgalla MJ, Beesley ED (1969) Congo red-agar plating medium for detecting pigmentation in Pasteurella pestis. Appl Microbiol 18:834–837

    CAS  PubMed  Google Scholar 

  • Thompson JM, Jones HA, Perry RD (1999) Molecular characterization of the hemin uptake locus (hmu) from Yersinia pestis and analysis of hmu mutants for hemin and hemoprotein utilization. Infect Immun 67:3879–3892

    CAS  PubMed  Google Scholar 

  • Thomson NR, Howard S, Wren BW, Holden MTG, Crossman L, Challis GL, Churcher C, Mungall K, Brooks K, Chillingworth T, Feltwell T, Abdellah Z, Hauser H, Jagels K, Maddison M, Moule S, Sanders M, Whitehead S, Quail MA, Dougan G, Parkhill J, Prentice MB (2006) The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet 2:e206

    Article  PubMed  Google Scholar 

  • Une T, Brubaker RR (1984) In vivo comparison of avirulent Vwa and Pgm or Pstr phenotypes of yersiniae. Infect Immun 43:895–900

    CAS  PubMed  Google Scholar 

  • Walsh CT, Marshall CG (2004) Siderophore biosynthesis in bacteria. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington, pp 18–37

    Google Scholar 

  • Weinberg ED, Weinberg GA (1995) The role of iron in infection. Curr Opin Infect Dis 8:164–169

    Article  Google Scholar 

  • Wren BW (2003) The Yersiniae—a model genus to study the rapid evolution of bacterial pathogens. Nature Rev 1:55–64

    Article  CAS  Google Scholar 

  • Wyckoff EE, Schmitt M, Wilks A, Payne SM (2004) HutZ is required for efficient heme utilization in Vibrio cholerae. J Bacteriol 186:4142–4151

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Han Y, Song Y, Huang P, Yang R (2004a) Comparative and evolutionary genomics of Yersinia pestis. Microbes Infect 6:1226–1234

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Tong Z, Song Y, Han Y, Pei D, Pang X, Zhai J, Li M, Cui B, Qi Z, Jin L, Dai R, Du Z, Wang J, Guo Z, Wang J, Huang P, Yang R (2004b) Genetics of metabolic variations between Yersinia pestis biovars and the proposal of a new biovar, microtus. J Bacteriol 186:5147–5152

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Department of Homeland Security, Office of Research and Development through Interagency Agreement HSHQDE-05-00317 and Public Health Service grant AI25098. We thank Ildefonso Mier, Jr., Alex Bobrov, and Olga Kirillina for thoughtful discussions and assistance with some experiments. We also thank Scott Bearden for providing Y. pestis strains CO99-3015 and CO99-3015P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Perry.

Additional information

S. Forman and J.T. Paulley contributed equally to this study and are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forman, S., Paulley, J.T., Fetherston, J.D. et al. Yersinia ironomics: comparison of iron transporters among Yersiniapestis biotypes and its nearest neighbor, Yersinia pseudotuberculosis. Biometals 23, 275–294 (2010). https://doi.org/10.1007/s10534-009-9286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-009-9286-4

Keywords

Navigation