Skip to main content

Advertisement

Log in

Sulphate reduction and calcite precipitation in relation to internal eutrophication of groundwater fed alkaline fens

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Although in Europe atmospheric deposition of sulphur has decreased considerably over the last decades, groundwater pollution by sulphate may still continue due to pyrite oxidation in the soil as a result of excessive fertilisation. Inflowing groundwater rich in sulphate can change biogeochemical cycling in nutrient-poor wetland ecosystems. Incoming sulphate loads may induce internal eutrophication as well as the accumulation of dissolved sulphide, which is phytotoxic. We, however, argue that upwelling sulphate rich groundwater may also promote the conservation of rare and threatened alkaline fens, since excessive fertilisation and pyrite oxidation also produces acidity, which invokes calcite dissolution, and increased alkalinity and hardness (Ca2+ + Mg2+) of the inflowing groundwater. Our observations in a very species-rich wetland nature reserve show that sulphate is reduced and effectively precipitates as iron sulphides when this calcareous and sulphate rich groundwater flows upward through the organic soil of the investigated nature reserve. Furthermore, we show that sulphate reduction coincides with an increase in alkalinity production, which in our case results in active calcite precipitation in the soil. In spite of the occurring sulphate reduction we found no evidence for internal eutrophication. Extremely low phosphorous concentration in the pore water could be attributed to a high C:P ratio of soil organic matter and co-precipitation with calcite. Our study shows that seepage dependent alkaline fen ecosystems can be remarkably resilient to fertilisation and pyrite oxidation induced groundwater quality changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Describing organic matter as CH2O is of course a simplification, it contains for instance significant amounts of nitrogen and phosphorous, which will be released when organic matter is oxidized.

  2. To be read as: piezometer P1, filter 1.

References

  • Ali MA, Dzombak DA (1996) Interactions of copper, organic acids, and sulfate in goethite suspensions. GeCoA 60(24):5045–5053. doi:10.1016/S0016-7037(96)00311-0

    Article  Google Scholar 

  • Almendinger JE, Leete JH (1998) Peat characteristics and groundwater geochemistry of calcareous fens in the Minnesota River Basin, U.S.A. Biogeochemistry 43(1):17–41. doi:10.1023/a:1005905431071

    Article  Google Scholar 

  • Alvarez R, Evans LA, Milham PJ, Wilson MA (2004) Effects of humic material on the precipitation of calcium phosphate. Geoderma 118(3–4):245–260. doi:10.1016/s0016-7061(03)00207-6

    Article  Google Scholar 

  • Appelo CAJ (2000) Comment on “Sulfate transport in a Coastal Plain confining unit, New Jersey, USA” (Pucci 1999). Hydrogeol J 8(4):455–456. doi:10.1007/pl00010980

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution. Balkema Publishers, Leiden

    Book  Google Scholar 

  • Beemster J, Wendt TA, Schipper P (2002) Ontwerp grondwaterkwaliteitsmeetnet winning Veenendaal. Grontmij Advies & Techniek, Houten

    Google Scholar 

  • Begg CBM, Kirk GJD, Mackenzie AF, Neue HU (1994) Root-induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol 128(3):469–477

    Article  Google Scholar 

  • Boeye D, van Straaten D, Verheyen RF (1995) A recent transformation from poor to rich fen caused by artificial groundwater recharge. J Hydrol 169(1–4):111–129

    Article  Google Scholar 

  • Boman A, Fröjdö S, Backlund K, Åström ME (2010) Impact of isostatic land uplift and artificial drainage on oxidation of brackish-water sediments rich in metastable iron sulfide. GeCoA 74(4):1268–1281. doi:10.1016/j.gca.2009.11.026

    Article  Google Scholar 

  • Boyer MLH, Wheeler BD (1989) Vegetation patterns in spring-fed calcareous fens: calcite precipitation and constraints on fertility. J Ecol 77(2):597–609

    Article  Google Scholar 

  • Casagrande DJ, Gronli K, Sutton N (1980) The distribution of sulfur and organic matter in various fractions of peat: origins of sulfur in coal. GeCoA 44(1):25–32

    Article  Google Scholar 

  • Cirkel DG (2010) Verdrogingsbestrijding TOP-gebied Meeuwenkampje. Systeemanalyse, knelpuntenanalyse en maatregelen. Provincie Utrecht, Utrecht

  • Danen-Louwerse HJ, Lijklema L, Coenraats M (1995) Coprecipitation of phosphate with calcium carbonate in Lake Veluwe. Water Res 29(7):1781–1785. doi:10.1016/0043-1354(94)00301-m

    Article  Google Scholar 

  • Devau N, Cadre EL, Hinsinger P, Jaillard B, Gérard F (2009) Soil pH controls the environmental availability of phosphorus: experimental and mechanistic modelling approaches. Appl Geochem 24(11):2163–2174. doi:10.1016/j.apgeochem.2009.09.020

    Article  Google Scholar 

  • Fowler D, Smith R, Muller J, Cape J, Sutton M, Erisman J, Fagerli H (2007) Long term trends in sulphur and nitrogen deposition in Europe and the cause of non-linearities. Water Air Soil Pollut Focus 7(1–3):41–47. doi:10.1007/s11267-006-9102-x

    Article  Google Scholar 

  • Geelhoed JS, Hiemstra T, Van Riemsdijk WH (1997) Phosphate and sulfate adsorption on goethite: single anion and competitive adsorption. GeCoA 61(12):2389–2396. doi:10.1016/S0016-7037(97)00096-3

    Article  Google Scholar 

  • Glaser PH, Janssens JA, Siegel DI (1990) The response of vegetation to chemical and hydrological gradients in the Lost River Peatland, Northern Minnesota. J Ecol 78(4):1021–1048

    Article  Google Scholar 

  • Goreau TJ, Kaplan WA, Wofsy SC, McElroy MB, Valois FW, Watson SW (1980) Production of NO2 and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl Environ Microbiol 40(3):526–532

    Google Scholar 

  • Grootjans AP, Alserda A, Bekker R, Janäkovä M, Kemmers R, Madaras M, Stanova V, Ripka J, Van Delft B, Wolejko L (2005) Calcareous spring mires in Slovakia; Jewels in the Crown of the Mire Kingdom. Stapfia 85, zugleich Kataloge der OÖ Landesmuseen (35):97–115

  • Grootjans AP, Adema EB, Bleuten W, Joosten H, Madaras M, Janáková M (2006) Hydrological landscape settings of base-rich fen mires and fen meadows: an overview. Appl Veg Sci 9(2):175–184. doi:10.1111/j.1654-109X.2006.tb00666.x

    Article  Google Scholar 

  • Hájková P, Grootjans A, Lamentowicz M, Rybníčková E, Madaras M, Opravilová V, Michaelis D, Hájek M, Joosten H, Wołejko L (2011) How a Sphagnum fuscum-dominated bog changed into a calcareous fen: the unique Holocene history of a Slovak spring-fed mire. J Quat Sci 27:233–243. doi:10.1002/jqs.1534

    Article  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237(2):173–195. doi:10.1023/a:1013351617532

    Article  Google Scholar 

  • Houba VJG, van der Lee JJ, Novozamsky I (1989) Soil and plant analysis, a series of syllabi. Part 5. Soil analysis procedures. Wageningen Agricultural University, Wageningen

    Google Scholar 

  • Jansen PC, Kemmers RH (1995) Ecohydrologisch onderzoek in het natuurreservaat ‘Het Meeuwenkampje’. Rapport 398. DLO-Staring Centrum, Wageningen

  • Jelgersma S, Breeuwer JB (1975) Toelichting bij de geologische overzichtsprofielen door Nederland. In: Staalduinen WHZCJ (ed) Toelichting bij de geologische overzichtskaarten van Nederland. Rijksgeologische dienst, Haarlem, pp 91–93

    Google Scholar 

  • Jorgensen BB (1982) Mineralization of organic matter in the sea bed, the role of sulphate reduction. Nature 296(5858):643–645

    Article  Google Scholar 

  • Jørgensen BB (1977) Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar Biol 41(1):7–17. doi:10.1007/bf00390576

    Article  Google Scholar 

  • Juncher Jørgensen C, Jacobsen OS, Elberling B, Aamand J (2009) Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environ Sci Technol 43(13):4851–4857. doi:10.1021/es803417s

    Article  Google Scholar 

  • Karageorgiou K, Paschalis M, Anastassakis GN (2007) Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. J Hazard Mater 139(3):447–452

    Article  Google Scholar 

  • Kemmers RH, Van Delft SPJ (2008) Stikstof-, fosfor- en kaliumbeschikbaarheid en kritische depositiewaarden voor stikstof in korte vegetaties. Alterra-Rapport 1598. Alterra, Wageningen

  • Kirkby CA, Kirkegaard JA, Richardson AE, Wade LJ, Blanchard C, Batten G (2011) Stable soil organic matter: a comparison of C:N:P:S ratios in Australian and other world soils. Geoderma 163(3–4):197–208. doi:10.1016/j.geoderma.2011.04.010

    Article  Google Scholar 

  • Koch MS, Mendelssohn IA, McKee KL (1990) Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnol Oceanogr 35(2):399–408

    Article  Google Scholar 

  • Konert M, Vandenberghe JEF (1997) Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44(3):523–535. doi:10.1046/j.1365-3091.1997.d01-38.x

    Article  Google Scholar 

  • Koster EA (2005) Recent advances in luminescence dating of Late Pleistocene (cold-climate) aeolian sand and loess deposits in western Europe. Permafr Periglac Process 16(1):131–143. doi:10.1002/ppp.512

    Article  Google Scholar 

  • Lamers L, Dolle G, Van Den Berg S, Van Delft S, Roelofs J (2001) Differential responses of freshwater wetland soils to sulphate pollution. Biogeochemistry 55(1):87–101. doi:10.1023/a:1010629319168

    Article  Google Scholar 

  • Lefohna AS, Husarb JD, Husarb HB (1999) Estimating historical anthropogenic global sulfur emission patterns for the period 1850–1990. Atmos Environ 33:3435–3444

    Article  Google Scholar 

  • Meijboom FW, Van Noordwijk M (1996) Rhizon soil solution samplers as artificial roots. In: Kutchera L, Huebl E, Lichtenegger E, Persson H, Sobotnik M (eds) Root ecology and its practical application. ISSR, Vienna, pp 793–795

    Google Scholar 

  • Mendizabal I (2011) Public supply well fields as a valuable groundwater quality monitoring network. Dissertation, VU University, Amsterdam

  • Mendizabal I, Baggelaar PK, Stuyfzand PJ (2012) Hydrochemical trends for public supply well fields in The Netherlands (1898–2008), natural backgrounds and upscaling to groundwater bodies. J Hydrol (0). doi:10.1016/j.jhydrol.2012.04.050

  • Nicholson BJ, Vitt DH (1990) The paleoecology of a peatland complex in continental western Canada. Can J Bot 68(1):121–138. doi:10.1139/b90-017

    Article  Google Scholar 

  • Oenema O (1999) Vermindering nutriëntenverlies uit landbouw; van nutriëntenoverschotten naar evenwicht tussen aanvoer en afvoer. Landschap 16(3):141–152

    Google Scholar 

  • Olde Venterink H, Wassen MJ, Verkroost AWM, De Ruiter PC (2003) Species-richness–productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 84(8):2191–2199. doi:10.1890/01-0639

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259, Denver

  • Parton WJ, Stewart JWB, Cole CV (1988) Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5(1):109–131

    Article  Google Scholar 

  • Plant LJ, House WA (2002) Precipitation of calcite in the presence of inorganic phosphate. Colloids Surf Physicochem Eng Aspects 203(1–3):143–153. doi:10.1016/s0927-7757(01)01089-5

    Article  Google Scholar 

  • Poelman JNB (1972) Soil material rich in pyrite in non-coastal areas. In: Dost H (ed) International symposium on acid sulphate soils, Wageningen, International Institute for Land Reclamation and Improvement

  • Postma D, Jakobsen R (1996) Redox zonation: equilibrium constraints on the Fe(III)/SO4 reduction interface. GeCoA 60(17):3169–3175. doi:10.1016/0016-7037(96)00156-1

    Article  Google Scholar 

  • Regina K, Nykänen H, Silvola J, Martikainen P (1996) Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeochemistry 35(3):401–418. doi:10.1007/bf02183033

    Article  Google Scholar 

  • Schaminée JHJ, Weeda EJ, Westhoff V (1995) De vegetatie van Nederland 2. Wateren, moerassen, natte heiden. Opulus Press, Uppsala

  • Schiff SL, Spoelstra J, Semkin RG, Jeffries DS (2005) Drought induced pulses of from a Canadian shield wetland: use of δ34S and δ18O into determine sources of sulfur. Appl Geochem 20(4):691–700. doi:10.1016/j.apgeochem.2004.11.011

    Article  Google Scholar 

  • Schot PP, Dekker SC, Poot A (2004) The dynamic form of rainwater lenses in drained fens. J Hydrol 293(1–4):74–84

    Article  Google Scholar 

  • Šefferová Stanová V, Šeffer J, Janák M (2008) Management of Natura 2000 habitats. 7230 Alkaline fens. The European Commission (DG ENV B2). http://ec.europa.eu/environment/nature/natura2000/management/habitats/pdf/7230_Alkaline_fens.pdf

  • Smolders AJP, Moonen M, Zwaga K, Lucassen ECHET, Lamers LPM, Roelofs JGM (2006) Changes in pore water chemistry of desiccating freshwater sediments with different sulphur contents. Geoderma 132(3–4):372–383

    Article  Google Scholar 

  • Smolders A, Lucassen E, Bobbink R, Roelofs J, Lamers L (2010) How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the sulphur bridge. Biogeochemistry 98(1):1–7. doi:10.1007/s10533-009-9387-8

    Google Scholar 

  • Stern DI (2005) Global sulfur emissions from 1850 to 2000. Chemosphere 58(2):163–175. doi:10.1016/j.chemosphere.2004.08.022

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1996) Chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York

    Google Scholar 

  • Triska F, Jackman A, Duff J, Avanzino R (1994) Ammonium sorption to channel and riparian sediments: a transient storage pool for dissolved inorganic nitrogen. Biogeochemistry 26(2):67–83. doi:10.1007/bf02182880

    Article  Google Scholar 

  • Van Beek CGEM, Jalink M, Meuleman AFM (2001) De verzwaveling van grondwater in zandgronden. Landschap 18(4):267–272

    Google Scholar 

  • van Bodegom PM, van Reeven J, van der Denier Gon HAC (2003) Prediction of reducible soil iron content from iron extraction data. Biogeochemistry 64(2):231–245. doi:10.1023/a:1024935107543

    Article  Google Scholar 

  • Van Delft B, Brouwer F, Van der Werff M, Kemmers R (2010) Natuurpotentie Willinks Weust, resultaten van een Ecopedologisch onderzoek. Alterra Wageningen UR, Wageningen

    Google Scholar 

  • van der Swaluw E, Asman WAH, van Jaarsveld H, Hoogerbrugge R (2011) Wet deposition of ammonium, nitrate and sulfate in the Netherlands over the period 1992–2008. Atmos Environ 45(23):3819–3826. doi:10.1016/j.atmosenv.2011.04.017

    Article  Google Scholar 

  • van der Welle MEW, Roelofs JGM, Lamers LPM (2008) Multi-level effects of sulphur-iron interactions in freshwater wetlands in The Netherlands. Sci Total Environ 406(3):426–429

    Article  Google Scholar 

  • van Helvoort P-J, Griffioen J, Hartog N (2007) Characterization of the reactivity of riverine heterogeneous sediments using a facies-based approach; the Rhine–Meuse delta (The Netherlands). Appl Geochem 22(12):2735–2757. doi:10.1016/j.apgeochem.2007.06.016

    Article  Google Scholar 

  • Wang MK, Tzou YM (1995) Phosphate sorption by calcite, and iron-rich calcareous soils. Geoderma 65(3–4):249–261. doi:10.1016/0016-7061(95)94049-a

    Article  Google Scholar 

  • Weng L, Vega FA, Van Riemsdijk WH (2011) Competitive and synergistic effects in pH dependent phosphate adsorption in soils: LCD modeling. Environ Sci Technol 45(19):8420–8428. doi:10.1021/es201844d

    Article  Google Scholar 

  • Wheeler BD (1980) Plant communities of rich-fen systems in England and Wales: II. Communities of calcareous mires. J Ecol 68(2):405–420

    Article  Google Scholar 

  • Wiebe WJ (1981) Anaerobic respiration and fermentation. In: Pomeroy LR, Wiegert RG (eds) The ecology of a salt marsh. Springer, New York, pp 137–159

    Chapter  Google Scholar 

  • Witte JPM, Runhaar J, van Ek R, van der Hoek DCJ, Bartholomeus RP, Batelaan O, van Bodegom PM, Wassen MJ, van der Zee SEATM (2012) An ecohydrological sketch of climate change impacts on water and natural ecosystems for the Netherlands: bridging the gap between science and society. HESSD 11:3945–3957

    Google Scholar 

  • Zhang Y-C, Slomp CP, Broers HP, Passier HF, Cappellen PV (2009) Denitrification coupled to pyrite oxidation and changes in groundwater quality in a shallow sandy aquifer. GeCoA 73(22):6716–6726. doi:10.1016/j.gca.2009.08.026

    Article  Google Scholar 

Download references

Acknowledgments

This manuscript benefited significantly from the valuable comments of three anonymous reviewers. The study was carried out within the framework of the Netherlands Organisation for Scientific Research (NWO) CASIMIR programme (018.002.007), the Dutch Water Utility Sector joint research programme (BTO) and the Knowledge for Climate programme theme 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Cirkel.

Additional information

Responsible Editor: C.T. Driscoll.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirkel, D.G., Van Beek, C.G.E.M., Witte, J.P.M. et al. Sulphate reduction and calcite precipitation in relation to internal eutrophication of groundwater fed alkaline fens. Biogeochemistry 117, 375–393 (2014). https://doi.org/10.1007/s10533-013-9879-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-013-9879-4

Keywords

Navigation