Skip to main content

Advertisement

Log in

The Impact of Fe(III)-reducing Bacteria on Uranium Mobility

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The ability of specialist prokaryotes to couple the oxidation of organic compounds to the reduction of Fe(III) is widespread in the subsurface. Here microbial Fe(III) reduction can have a great impact on sediment geochemistry, affecting the minerals in the subsurface, the cycling of organic compounds and the mobility of a wide range of toxic metals and radionuclides. The contamination of the environment with radioactive waste is a major concern worldwide, and this review focuses on the mechanisms by which Fe(III)-reducing bacteria can affect the solubility and mobility of one of the most common radionuclide contaminants in the subsurface, uranium. In addition to discussing how these processes underpin natural biogeochemical cycles, we also discuss how these microbial activities can be harnessed for the bioremediation of uranium-contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R.T. Anderson H.A. Vrionis I. Ortiz-Bernad C.T. Resch P.E. Long R. Dayvault K. Karp S. Marutzky D.R. Metzler A. Peacock D.C. White M. Lowe D.R. Lovley (2003) ArticleTitleStimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer Appl. Environ. Microbiol. 69 5884–5891 Occurrence Handle10.1128/AEM.69.10.5884-5891.2003

    Article  Google Scholar 

  • V.V. Balashova (1985) ArticleTitleThe use of molecular sulfur to oxidize H2 by the facultative anaerobe Pseudomonas Microbiology 54 324–326

    Google Scholar 

  • V.V. Balashova G.A. Zavarzin (1980) ArticleTitleAnaerobic reduction of ferric iron by hydrogen bacteria Microbiology 48 635–639

    Google Scholar 

  • J.E. Banaszak B.E. Rittmann D.T. Reed (1999) ArticleTitleSubsurface interactions of actinide species and microorganisms: implications for the bioremediation of actinide-organic mixtures J. Radioanal. Nucl. Chem. 241 385–435 Occurrence Handle10.1007/BF02347481

    Article  Google Scholar 

  • J.F. Banfield S.A. Welch H. Zhang T.T. Ebert R.L. Penn (2000) ArticleTitleAggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products Science 289 751–754 Occurrence Handle10.1126/science.289.5480.751

    Article  Google Scholar 

  • T. Behrends P. Cappellen ParticleVan (2005) ArticleTitleCompetition between enzymatic and abiotic reduction of uranium(VI) under iron reducing conditions Chem. Geol. 220 315–327 Occurrence Handle10.1016/j.chemgeo.2005.04.007

    Article  Google Scholar 

  • E. Bonatti D.E. Fisher O. Joensuu H.S. Rydell (1971) ArticleTitlePostdepositional mobility of some transition elements, phosphorus, uranium and thorium in deep sea sediments Geochim. Cosmochim. Acta 35 189–201 Occurrence Handle10.1016/0016-7037(71)90057-3

    Article  Google Scholar 

  • D.R. Bond D.R. Lovley (2005) ArticleTitleEvidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans Appl. Environ. Microbiol. 71 2186–2189 Occurrence Handle10.1128/AEM.71.4.2186-2189.2005

    Article  Google Scholar 

  • D.R. Bond D.E. Holmes L.M. Tender D.R. Lovley (2002) ArticleTitleElectrode-reducing microorganisms that harvest energy from marine sediments Science 295 483–485 Occurrence Handle10.1126/science.1066771

    Article  Google Scholar 

  • S.C. Brooks J.K. Fredrickson S.L. Carroll D.W. Kennedy J.M. Zachara A.E. Plymale S.D. Kelly K.M. Kemner S. Fendorf (2003) ArticleTitleInhihition of bacterial U(VI) reduction by calcium Environ. Sci. Technol. 37 1850–1858 Occurrence Handle10.1021/es0210042

    Article  Google Scholar 

  • I. Burke C. Boothman J.R. Lloyd R.J.G. Mortimer F.R. Livens K. Morris (2005) ArticleTitleBiogeochemistry of Tc in marine and freshwater sediments Environ. Sci. Technol. 39 4109–4116 Occurrence Handle10.1021/es048124p

    Article  Google Scholar 

  • F. Caccavo SuffixJr. R.P. Blakemore D.R. Lovley (1992) ArticleTitleA hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire Appl. Environ. Microbiol. 58 3211–3216

    Google Scholar 

  • F. Caccavo SuffixJr. J.D. Coates R.A. Rossello-Mora W. Ludwig K.H. Schleifer D.R. Lovley M.J. McInerney (1996) ArticleTitleGeovibrio ferrireducensa phylogenetically distinct dissimilatory Fe(III)-reducing bacterium Arch. Microbiol. 165 370–376 Occurrence Handle10.1007/s002030050340

    Article  Google Scholar 

  • F. Caccavo SuffixJr. D.J. Lonergan D.R. Lovley M. Davis J.F. Stolz M.J. McInerney (1994) ArticleTitleGeobacter sulfurreducens sp. nov., a hydrogen and acetate-oxidizing dissimilatory metal reducing microorganism Appl. Environ. Microbiol. 60 3752–3759

    Google Scholar 

  • D.E. Canfield (1989) ArticleTitleReactive iron in marine sediments Geochim. Cosmochim. Acta 53 619–632 Occurrence Handle10.1016/0016-7037(89)90005-7

    Article  Google Scholar 

  • F.H. Chapelle (1993) Ground-Water Microbiology and Geochemistry John Wiley New York

    Google Scholar 

  • L. Charlet E. Liger P. Gerasimo (1998a) ArticleTitleDecontamination of TCE- and U-rich waters by granular iron: role of sorbed Fe(II) J. Environ. Eng. 124 25–30 Occurrence Handle10.1061/(ASCE)0733-9372(1998)124:1(25)

    Article  Google Scholar 

  • L. Charlet E. Silvester E. Liger (1998b) ArticleTitleN-compound reduction and actinide immobilisation in surficial fluids by Fe(II): the surface FeIIIOFeIIOHo species, as major reductant Chem. Geol. 151 85–93 Occurrence Handle10.1016/S0009-2541(98)00072-2

    Article  Google Scholar 

  • S.E. Childers S. Ciufo D.R. Lovley (2002) ArticleTitleGeobacter metallireducens access Fe(III) oxide by chemotaxis Nature 416 767–769 Occurrence Handle10.1038/416767a

    Article  Google Scholar 

  • J.D. Coates D.J. Ellis C.V. Gaw D.R. Lovley (1999) ArticleTitleGeothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer Int. J. Syst. Bacteriol. 49 1615–1622 Occurrence Handle10.1099/00207713-49-4-1615

    Article  Google Scholar 

  • J.D. Coates D.J. Lonergan E.J.P. Philips H. Jenter D.R. Lovley (1995) ArticleTitleDesulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids Arch. Microbiol. 164 406–413 Occurrence Handle10.1007/s002030050282

    Article  Google Scholar 

  • R.M. Cornell U. Schwertmann (1996) The Iron oxides: StructureProperties, Reactions, Occurrence and Uses VCH Publishers New York

    Google Scholar 

  • J.D. Crowley J.F. Ahearne (2002) ArticleTitleManaging the environmental legacy of U.S. Nuclear weapons production Am. Sci. 90 514–523 Occurrence Handle10.1511/2002.6.514

    Article  Google Scholar 

  • D.A. Elias L.R. Krumholz D. Wong P.E. Long J.M. Suflita (2003a) ArticleTitleCharacterization of microbial activities and U reduction in a shallow aquifer contaminated by uranium mill tailings Microb. Ecol. 46 83–91 Occurrence Handle10.1007/s00248-002-1060-x

    Article  Google Scholar 

  • D.A. Elias J.M. Senko L.R. Krumholz (2003b) ArticleTitleA procedure for quantitation of total oxidized uranium for bioremediation studies J. Microbiol. Meth. 53 343–353 Occurrence Handle10.1016/S0167-7012(02)00252-X

    Article  Google Scholar 

  • K.T. Finneran R.T. Anderson K.P. Nevin D.R. Lovley (2002a) ArticleTitlePotential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction Soil Sed. Contam. 11 339–357 Occurrence Handle10.1080/20025891106781

    Article  Google Scholar 

  • K.T. Finneran M.E. Housewright D.R. Lovley (2002b) ArticleTitleMultiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments Environ. Microbiol. 4 510–516 Occurrence Handle10.1046/j.1462-2920.2002.00317.x

    Article  Google Scholar 

  • M. Flury S. Czigany G. Chen J.B. Harsh (2004) ArticleTitleCesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength J. Contam. Hydrol. 71 111–126 Occurrence Handle10.1016/j.jconhyd.2003.09.005

    Article  Google Scholar 

  • A.J. Francis C.J. Dodge F. Lu G.P. Halada C.R. Clayton (1994) ArticleTitleXPS and XANES studies of uranium reduction by Clostridium sp Environ. Sci. Technol. 28 636–639 Occurrence Handle10.1021/es00053a016

    Article  Google Scholar 

  • J.K. Fredrickson J.M. Zachara D.W. Kennedy H. Dong T.C. Onstott N.W. Hinman S.-M. Li (1998) ArticleTitleBiogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium Geochim. Cosmochim. Acta 62 3239–3257 Occurrence Handle10.1016/S0016-7037(98)00243-9

    Article  Google Scholar 

  • J.K. Fredrickson J.M. Zachara D.W. Kennedy M.C. Duff Y.A. Gorby S.-M.W. Li K.M. Krupka (2000) ArticleTitleReduction of U(VI) in goethite (a-FeOOH) suspensions by a dissimilatory metal-reducing bacterium Geochim. Cosmochim. Acta 64 3085–3098 Occurrence Handle10.1016/S0016-7037(00)00397-5

    Article  Google Scholar 

  • J.K. Fredrickson J.M. Zachara D.W. Kennedy R.K. Kukkadapu J.P. McKinley S.M. Heald C. Liu A.E. Plymale (2004) ArticleTitleReduction of TcO 4 by sediment-associated biogenic Fe(II) Geochim. Cosmochim. Acta 68 3171–3187 Occurrence Handle10.1016/j.gca.2003.10.024

    Article  Google Scholar 

  • Gadd G.M. 2005. Microbial interactions with metals/radionuclides: the basis of bioremediation. In: Livens F.R. and Keith-Roach M.J. (eds.), Interactions of Microorganisms With Radionuclides. Elsevier, pp. 179–203.

  • R. Ganesh K. Robinson G. Reed G. Sayler (1997) ArticleTitleReduction of hexavalent uranium from organic complexes by sulfate- and iron-reducing bacteria Appl. Environ. Microbiol. 63 4385–4391

    Google Scholar 

  • S. Glasauer P.G. Weidler S. Langley T.J. Beveridge (2003) ArticleTitleControls on Fe reduction and mineral formation by a subsurface bacterium Geochim. Cosmochim. Acta 67 1277–1288 Occurrence Handle10.1016/S0016-7037(02)01199-7

    Article  Google Scholar 

  • Y.A. Gorby D.R. Lovley (1992) ArticleTitleEnzymatic uranium precipitation Environ. Sci. Technol. 26 205–207 Occurrence Handle10.1021/es00025a026

    Article  Google Scholar 

  • Y.A. Gorby F. Caccavo SuffixJr. H. Bolton (1998) ArticleTitleMicrobial reduction of cobalt(III)EDTA in the presence and absence of manganese(IV) oxide Environ. Sci. Technol. 32 244–250 Occurrence Handle10.1021/es970516r

    Article  Google Scholar 

  • B. Gu W.-M. Wu M.A. Ginder-Vogel H. Yan M.W. Fields J. Zhou S. Fendorf C.S. Criddle P.M. Jardine (2005a) ArticleTitleBioreduction of uranium in a contaminated soil column Environ. Sci. Technol. 39 4841–4847 Occurrence Handle10.1021/es050011y

    Article  Google Scholar 

  • B. Gu H. Yan P. Zhou D.B. Watson M. Park J. Istok (2005b) ArticleTitleNatural humics impact uranium bioreduction and oxidation Environ. Sci. Technol. 39 5268–5275 Occurrence Handle10.1021/es050350r

    Article  Google Scholar 

  • C.M. Hansel S.G. Benner J. Neiss A. Dohnalkova R.K. Kukkadapu S. Fendorf (2003) ArticleTitleSecondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow Geochim. Cosmochim. Acta 67 2977–2992 Occurrence Handle10.1016/S0016-7037(03)00276-X

    Article  Google Scholar 

  • C.M. Hansel S.G. Benner P. Nico S. Fendorf (2004) ArticleTitleStructural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II) Geochim. Cosmochim. Acta 68 3217–3229 Occurrence Handle10.1016/j.gca.2003.10.041

    Article  Google Scholar 

  • M.E. Hernandez A. Kappler D.K. Newman (2004) ArticleTitlePhenazines and other redox-active antibiotics promote microbial mineral reduction Appl. Environ. Microbiol. 70 921–928 Occurrence Handle10.1128/AEM.70.2.921-928.2004

    Article  Google Scholar 

  • D.E. Holmes K.T. Finneran D.R. Lovley (2002) ArticleTitleEnrichment of Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments Appl. Environ. Microbiol. 68 2300–2306 Occurrence Handle10.1128/AEM.68.5.2300-2306.2002

    Article  Google Scholar 

  • C.-kD. Hsi D. Langmuir (1985) ArticleTitleAdsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model Geochim. Cosmochim. Acta 49 1931–1941 Occurrence Handle10.1016/0016-7037(85)90088-2

    Article  Google Scholar 

  • F.S. Islam A.G. Gault C. Boothman D.A. Polya J.M. Charnock D. Chatterjee J.R. Lloyd (2004) ArticleTitleRole of metal-reducing bacteria in arsenic release from Bengal delta sediments Nature 430 68–71 Occurrence Handle10.1038/nature02638

    Article  Google Scholar 

  • J.D. Istok J.M. Senko L.R. Krumholz D. Watson M.A. Bogle A. Peacock Y.J. Chang D.C. White (2004) ArticleTitleIn situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer Environ. Sci. Technol. 38 468–475 Occurrence Handle10.1021/es034639p

    Article  Google Scholar 

  • B.-H. Jeon S.D. Kelly K.M. Kemner M.O. Barnett W.D. Burgos B.A. Dempsey E.E. Roden (2004) ArticleTitleMicrobial reduction of U(VI) at the solid-water interface Environ. Sci. Technol. 38 5649–5655 Occurrence Handle10.1021/es0496120

    Article  Google Scholar 

  • B.-H. Jeon B.A. Dempsey W.D. Burgos M.O. Barnett E.E. Roden (2005) ArticleTitleChemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides Environ. Sci. Technol. 39 5642–5649 Occurrence Handle10.1021/es0487527

    Article  Google Scholar 

  • J.H. Johnston D.G. Lewis (1983) ArticleTitleA detailed study of the transformation of ferrihydrite to hematite in an aqueous medium at 92 °C Geochim. Cosmochim. Acta 47 1823–1831 Occurrence Handle10.1016/0016-7037(83)90200-4

    Article  Google Scholar 

  • K. Kashefi D.E. Holmes A-L Reysenbach D.R. Lovley (2002) ArticleTitleUse of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: Isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov Appl. Environ. Microbiol. 68 1735–1742 Occurrence Handle10.1128/AEM.68.4.1735-1742.2002

    Article  Google Scholar 

  • K. Kashefi J.M. Tor K.P. Nevin D.R. Lovley (2001) ArticleTitleReductive precipitation of gold by dissimilatory Fe(III)-reducing Bacteria and Archaea App. Environ. Microbiol. 67 3275–3279 Occurrence Handle10.1128/AEM.67.7.3275-3279.2001

    Article  Google Scholar 

  • K. Kusel T. Dorsch G. Acker E. Stackebrandt (1999) ArticleTitleMicrobial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose Appl. Environ. Microbiol. 65 3633–3640

    Google Scholar 

  • D. Langmuir (1978) ArticleTitleUranium solution – mineral equilibria at low temperatures with applications to sedimentary ore deposits Geochim. Cosmochim. Acta 42 547–569 Occurrence Handle10.1016/0016-7037(78)90001-7

    Article  Google Scholar 

  • E. Liger L. Charlet P. Cappellen ParticleVan (1999) ArticleTitleSurface catalysis of uranium(VI) reduction by iron(II) Geochim. Cosmochim. Acta 63 2939–2955 Occurrence Handle10.1016/S0016-7037(99)00265-3

    Article  Google Scholar 

  • C.X. Liu Y.A. Gorby J.M. Zachara J.K. Fredrickson C.F. Brown (2002) ArticleTitleReduction kinetics of Fe(III), Co(III), U(VI) Cr(VI) and Tc(VII) in cultures of dissimilatory metal-reducing bacteria Biotech. Bioeng. 80 637–649 Occurrence Handle10.1002/bit.10430

    Article  Google Scholar 

  • C.X. Liu J.M. Zachara L.R. Zhong R. Kukkadupa J.E. Szecsody D.W. Kennedy (2005) ArticleTitleInfluence of sediment bioreduction and reoxidation on uranium sorption Environ. Sci. Technol. 39 4125–4133 Occurrence Handle10.1021/es048501y

    Article  Google Scholar 

  • J.R. Lloyd (2003) ArticleTitleMicrobial reduction of metals and radionuclides FEMS Microbiol. Rev. 27 411–425 Occurrence Handle10.1016/S0168-6445(03)00044-5

    Article  Google Scholar 

  • J.R. Lloyd D.R. Lovley (2001) ArticleTitleMicrobial detoxification of metals and radionuclides Curr. Opin. Biotechnol. 12 248–253 Occurrence Handle10.1016/S0958-1669(00)00207-X

    Article  Google Scholar 

  • J.R. Lloyd L.E. Macaskie (1996) ArticleTitleA novel phosphorimager based technique for monitoring the microbial reduction of technetium Appl. Environ. Microbiol. 62 578–582

    Google Scholar 

  • J.R. Lloyd L.E. Macaskie (2000) Bioremediation of radioactive metals D.R. Lovley (Eds) Environmental Microbe–Metal Interactions ASM Press Washington, D.C. 277–327

    Google Scholar 

  • J.R. Lloyd J.C. Renshaw (2005) Microbial transformations of radionuclides: fundamental mechanisms and biogeochemical implications in ‘biogeochemical cycles’ A. Siegel H. Siegel R.K.O. Siegel (Eds) Met. Ions Biol. Syst Dekker M New York

    Google Scholar 

  • J.R. Lloyd V.A. Sole C.V. Praagh ParticleVan D.R. Lovley (2000a) ArticleTitleDirect and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria Appl. Environ. Microbiol. 66 3743–3749 Occurrence Handle10.1128/AEM.66.9.3743-3749.2000

    Article  Google Scholar 

  • J.R. Lloyd P. Yong L.E. Macaskie (2000b) ArticleTitleBiological reduction and removal of pentavalent Np by the concerted action of two microorganisms Environ. Sci. Technol. 34 1297–1301 Occurrence Handle10.1021/es990394y

    Article  Google Scholar 

  • J.R. Lloyd J. Chesnes S. Glasauer D.J. Bunker F.R. Livens D.R. Lovley (2002) ArticleTitleReduction of actinides and fission products by Fe(III)-reducing bacteria Geomicrobiol. J. 19 103–120 Occurrence Handle10.1080/014904502317246200

    Article  Google Scholar 

  • J.R. Lloyd C. Leang A.L. Hodges Myerson S. Ciufo S.J. Sandler B. Methe D.R. Lovley (2003) ArticleTitleBiochemical and genetic characterization of PpcAa periplasmic c-type cytochrome in Geobacter sulfurreducens Biochem. J. 369 153–161 Occurrence Handle10.1042/BJ20020597

    Article  Google Scholar 

  • J.R. Lloyd D.R. Lovley L.E. Macaskie (2004) ArticleTitleBiotechnological application of metal-reducing bacteria Adv. Appl. Microbiol. 53 85–128 Occurrence Handle10.1016/S0065-2164(03)53003-9

    Article  Google Scholar 

  • D.J. Lonergan H. Jenter J.D. Coates E.J.P. Phillips T. Schmidt D.R. Lovley (1996) ArticleTitlePhylogenetic analysis of dissimilatory Fe(III)-reducing bacteria J. Bacteriol. 178 2402–2408

    Google Scholar 

  • D. Lovley E.J. Phillips (1992a) ArticleTitleReduction of uranium by Desulfovibrio desulfuricans Appl. Environ. Microbiol. 58 850–856

    Google Scholar 

  • D.R. Lovley R.T. Anderson (2000) ArticleTitleInfluence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface Hydrogeol. J. 8 77–88 Occurrence Handle10.1007/PL00010974

    Article  Google Scholar 

  • D.R. Lovley E.J.P. Phillips (1986a) ArticleTitleAvailability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac river Appl. Environ. Microbiol. 52 751–757

    Google Scholar 

  • D.R. Lovley E.J.P. Phillips (1986b) ArticleTitleOrganic matter mineralization with reduction of ferric iron in anaerobic sediments Appl. Environ. Microbiol. 51 683–689

    Google Scholar 

  • D.R. Lovley E.J.P. Phillips (1987) ArticleTitleRapid assay for microbially reducible ferric iron in aquatic sediments Appl. Environ. Microbiol. 53 1536–1540

    Google Scholar 

  • D.R. Lovley E.R. Phillips (1988) ArticleTitleNovel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese Appl. Environ. Microbiol. 54 1472–1480

    Google Scholar 

  • D.R. Lovley E.J.P. Phillips (1992b) ArticleTitleBioremediation of uranium contamination with enzymatic uranium reduction Environ. Sci. Technol. 26 2228–2234 Occurrence Handle10.1021/es00035a023

    Article  Google Scholar 

  • D.R. Lovley E.J.P. Phillips (1994) ArticleTitleReduction of chromate by Desulfovibrio vulgarisits c 3 cytochrome Appl. Environ. Microbiol. 60 726–728

    Google Scholar 

  • D.R. Lovley J.C. Woodward (1996) ArticleTitleMechanisms for chelator stimulation of microbial Fe(III)-oxide reduction Chem. Geol. 132 19–24 Occurrence Handle10.1016/S0009-2541(96)00037-X

    Article  Google Scholar 

  • D.R. Lovley E.J.P. Phillips D.J. Lonergan (1989) ArticleTitleHydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens Appl. Environ. Microbiol. 55 700–706

    Google Scholar 

  • D.R. Lovley E.J.P. Phillips Y.A. Gorby E. Landa (1991) ArticleTitleMicrobial reduction of uranium Nature 350 413–416 Occurrence Handle10.1038/350413a0

    Article  Google Scholar 

  • D.R. Lovley S.J. Giovannoni D.C. White J.E. Champine E.J.P. Phillips Y.A. Gorby S. Goodwin (1993a) ArticleTitleGeobacter metallireducens gen. nov., sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals Arch. Microbiol. 159 336–344 Occurrence Handle10.1007/BF00290916

    Article  Google Scholar 

  • D.R. Lovley E.E. Roden E.J.P. Phillips J.C. Woodward (1993b) ArticleTitleEnzymatic iron and uranium reduction by sulfate reducing bacteria Marine Geol. 113 41–53 Occurrence Handle10.1016/0025-3227(93)90148-O

    Article  Google Scholar 

  • D.R. Lovley P.K. Widman J.C. Woodward E.J.P. Phillips (1993c) ArticleTitleReduction of uranium by cytochrome c 3 of Desulfovibrio vulgaris Appl. Environ. Microbiol. 59 3572–3576

    Google Scholar 

  • D.R. Lovley E.J.P. Phillips D.J. Lonergan P.K. Widman (1995) ArticleTitleFe(III) and S(0) reduction by Pelobacter carbinolicus Appl. Envrion. Microbiol. 61 2132–2138

    Google Scholar 

  • D.R. Lovley J.C. Woodward F.H. Chapelle (1996) ArticleTitleRapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms Appl. Environ. Microbiol. 62 288–291

    Google Scholar 

  • D.R. Lovley J.D. Coates E.L. Blunt-Harris E.J.P. Phillips J.C. Woodward (1996) ArticleTitleHumic substances as electron acceptors for microbial respiration Nature 382 445–448 Occurrence Handle10.1038/382445a0

    Article  Google Scholar 

  • D.R. Lovley J.L. Fraga E.L. Blunt-Harris L.A. Hayes E.J.P. Phillips (1998) ArticleTitleHumic substances as a mediator for microbially catalyzed metal reduction Acta Hydrochim. Hydrobiol. 26 152–157 Occurrence Handle10.1002/(SICI)1521-401X(199805)26:3<152::AID-AHEH152>3.0.CO;2-D

    Article  Google Scholar 

  • D.R. Lovley J.L. Fraga J.D. Coates E.L. Blunt-Harris (1999) ArticleTitleHumics as an electron donor for anaerobic respiration Environ. Microbiol. 1 89–98 Occurrence Handle10.1046/j.1462-2920.1999.00009.x

    Article  Google Scholar 

  • D.R. Lovley D.E. Holmes K.P. Nevin (2004) ArticleTitleDissimilatory Fe(III) and Mn(IV) reduction Adv. Microbial. Phys. 49 219–286

    Google Scholar 

  • L.E. Macaskie (1991) ArticleTitleThe application of biotechnology to the treatment of wastes produced from nuclear fuel cycle: biodegradation and bioaccumulation as a means of treating radionuclide-containing streams Crit. Rev. Biotechnol. 11 41–112

    Google Scholar 

  • Macaskie L.E. and Lloyd J.R. 2002. Microbial interactions with radioactive wastes and potential applications. In: Livens F.R. and Keith-Roach M.J. (eds.), Interactions of Microorganisms with Radionuclides. Elsevier, 343–381.

  • J.A. Macdonald M.C. Kavanaugh (1994) ArticleTitleRestoring contaminated groundwater – an achievable goal Environ. Sci. Technol. 28 362A–368A

    Google Scholar 

  • D.M. Mackay J.A. Cherry (1989) ArticleTitleGroundwater contamination: pump-and-treat remediation Environ. Sci. Technol. 23 630–636 Occurrence Handle10.1021/es00064a001

    Article  Google Scholar 

  • J.P. McKinley C.J. Zeissler J.M. Zachara R.J. Serne R.M. Lindstrom H.T. Schaef R.D. Orr (2001) ArticleTitleDistribution and retention of Cs-137 in sediments at the Hanford siteWashington Environ. Sci. Technol. 35 3433–3441 Occurrence Handle10.1021/es0018116

    Article  Google Scholar 

  • B. Methe C.M. Fraser (2004) ArticleTitleRoll with the flow: microbial masters of redox chemistry Trends Microbiol. 12 439–441 Occurrence Handle10.1016/j.tim.2004.08.004

    Article  Google Scholar 

  • T. Missana C. Maffiotte M. Garcia-Gutierrez (2003) ArticleTitleSurface reactions kinetics between nanocrystalline magnetite and uranyl J. Colloid Interf. Sci. 261 154–160 Occurrence Handle10.1016/S0021-9797(02)00227-8

    Article  Google Scholar 

  • D.E. Morris (2002) ArticleTitleRedox energetics and kinetics of uranyl coordination complexes in aqueous solution Inorg. Chem. 41 3542–3547 Occurrence Handle10.1021/ic0201708

    Article  Google Scholar 

  • S.J. Morrison L.S. Cahn (1991) ArticleTitleMineralogical residence of alpha-emitting contamination and implications for mobilization from uranium mill tailings J. Contam. Hydrol. 8 1–21 Occurrence Handle10.1016/0169-7722(91)90006-M

    Article  Google Scholar 

  • D.P. Moser J.K. Fredrickson D.R. Geist E.V. Arntzen A.D. Peacock S.M.W. Li T. Spadoni J.P. McKinley (2003) ArticleTitleBiogeochemical processes and microbial characteristics across groundwater-surface water boundaries of the Hanford reach of the Columbia river Environ. Sci. Technol. 37 5127–5134 Occurrence Handle10.1021/es034457v

    Article  Google Scholar 

  • C.R. Myers B.P. Carstens W.E. Antholine J.M. Myers (2000) ArticleTitleChromium (VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1 J. Appl. Microbiol. 88 98–106 Occurrence Handle10.1046/j.1365-2672.2000.00910.x

    Article  Google Scholar 

  • C.R. Myers J.M. Myers (1992) ArticleTitleLocalization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1 J. Bacteriol. 174 3429–3438

    Google Scholar 

  • C.R. Myers J.M. Myers (1997) ArticleTitleOuter membrane cytochromes of Shewanella putrefaciens MR-1: spectral analysis, and purification of the 83-kDa c-type cytochrome Biochim. Biophys. Acta 1326 307–318

    Google Scholar 

  • C.R. Myers K.H.N. Nealson (1990) ArticleTitleRespiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and Fe(III) in Shewanella putrefaciens MR-1 J. Bacteriol. 172 6232–6238

    Google Scholar 

  • K. Nakata S. Nagasaki S. Tanaka Y. Sakamoto T. Tanaka H. Ogawa (2002) ArticleTitleSorption and reduction of neptumium(V) on the surface of iron oxides Radiochim. Acta. 90 665–669 Occurrence Handle10.1524/ract.2002.90.9-11_2002.665

    Article  Google Scholar 

  • K.P. Nevin D.R. Lovley (2002a) ArticleTitleMechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans Appl. Environ. Microbiol. 68 2294–2299 Occurrence Handle10.1128/AEM.68.5.2294-2299.2002

    Article  Google Scholar 

  • K.P. Nevin D.R. Lovley (2002b) ArticleTitleMechanisms for Fe(III) oxide reduction in sedimentary environments Geomicrobiol. J. 19 141–159 Occurrence Handle10.1080/01490450252864253

    Article  Google Scholar 

  • N.N. North S.L. Dollhopf L. Petrie J.D. Istok D.L. Balkwill J.E. Kostka (2004) ArticleTitleChange in bacterial community structure during in situ biostimulation of subsurface sediment co-contaminated with uranium and nitrate Appl. Environ. Microbiol. 70 4911–4920 Occurrence Handle10.1128/AEM.70.8.4911-4920.2004

    Article  Google Scholar 

  • I. Ortiz-Bernad R.T. Anderson H.A. Vrionis D.R. Lovley (2004a) ArticleTitleResistance of solid-phase U(VI) to microbial reduction during in situ bioremediation of uranium-contaminated groundwater Appl. Environ. Microbiol. 70 7558–7560 Occurrence Handle10.1128/AEM.70.12.7558-7560.2004

    Article  Google Scholar 

  • I. Ortiz-Bernad R.T. Anderson H.A. Vrionis D.R. Lovley (2004b) ArticleTitleVanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater Appl. Environ. Microbiol. 70 3091–3095 Occurrence Handle10.1128/AEM.70.5.3091-3095.2004

    Article  Google Scholar 

  • R. Payne L. Casalot T. Rivere J. Terry L. Larsen B. Giles J. Wall (2004) ArticleTitleInteraction between uranium and the cytochrome c 3 of Desulfovibrio desulfuricans strain G20 Arch. Microbiol. 181 398–406 Occurrence Handle10.1007/s00203-004-0671-7

    Article  Google Scholar 

  • R.B. Payne D.A. Gentry B.J. Rapp-Giles L. Casalot J.D. Wall (2002) ArticleTitleUranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome c 3 mutant Appl. Environ. Microbiol. 68 3129–3132 Occurrence Handle10.1128/AEM.68.6.3129-3132.2002

    Article  Google Scholar 

  • A. Peacock Y.J. Chang J.D. Istok L. Krumholz R. Geyer B. Kinsall D. Watson K.L. Sublette D.C. White (2004) ArticleTitleUtilization of microbial biofilms as monitors of bioremediation Microb. Ecol. 47 284–292 Occurrence Handle10.1007/s00248-003-1024-9

    Article  Google Scholar 

  • S.E. Pepper D.J. Bunker N.D. Bryan F.R. Livens J.M. Charnock R.A.D. Pattrick D. Collison (2003) ArticleTitleTreatment of radioactive wastes: an x-ray absorption spectroscopy study of the reaction of technetium with green rust J. Colloid Interf. Sci. 268 408–412 Occurrence Handle10.1016/j.jcis.2003.08.024

    Article  Google Scholar 

  • L. Petrie N.N. North S.L. Dollhopf D.L. Balkwill J.E. Kostka (2003) ArticleTitleEnumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI) Appl. Environ. Microbiol. 69 7467–7479 Occurrence Handle10.1128/AEM.69.12.7467-7479.2003

    Article  Google Scholar 

  • N. Pfennig H. Biebl (1976) ArticleTitleDesulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium Arch. Microbiol. 110 3–12 Occurrence Handle10.1007/BF00416962

    Article  Google Scholar 

  • E.J.P. Phillips E.R. Landa D.R. Lovley (1995) ArticleTitleRemediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction J. Ind. Microbiol. 14 203–207 Occurrence Handle10.1007/BF01569928

    Article  Google Scholar 

  • B.A. Powell R.A. Fjeld D.I. Kaplan J.T. Coates S.M. Serkiz (2004) ArticleTitlePu(V)O +2 adsorption and reduction by synthetic magnetite (Fe3O4) Environ. Sci. Technol. 38 6016–6024 Occurrence Handle10.1021/es049386u

    Article  Google Scholar 

  • D. Rai M. Yui D.A. Moore (2003) ArticleTitleSolubility and solubility product at 22 °C of UO2(c) precipitated from aqueous U(IV) solutions J. Solut. Chem. 32 1–17 Occurrence Handle10.1023/A:1022671530250

    Article  Google Scholar 

  • W.S. Reeburgh (1983) ArticleTitleRates of biogeochemical processes in anoxic sediments Annu. Rev. Earth Planet. Sci. 11 269–298 Occurrence Handle10.1146/annurev.ea.11.050183.001413

    Article  Google Scholar 

  • G. Reguera K.D. McCarthy T. Mehta J.S. Nicoll M.T. Tuominen D.R. Lovley (2005) ArticleTitleExtracellular electron transfer via microbial nanowires Nature 435 1098–1101 Occurrence Handle10.1038/nature03661

    Article  Google Scholar 

  • J. Renshaw L.J.C. Butchins F.R. Livens I. May J.M. Charnock J.R. Lloyd (2005) ArticleTitleBioreduction of uranium: environmental implications of a pentavalent intermediate Environ. Sci. Technol. 39 5657–5660 Occurrence Handle10.1021/es048232b

    Article  Google Scholar 

  • E. Roden (2003) ArticleTitleFe(III) oxide reactivity toward biological versus chemical reduction Environ. Sci. Technol. 37 1319–1324 Occurrence Handle10.1021/es026038o

    Article  Google Scholar 

  • E. Roden (2004a) Analysis of Fe(III) oxide reactivity toward long-term bacterial vs. chemical reduction R.B. Wanty R.R. Seal SuffixII (Eds) Proceedings of the 11th International Symposium on Water–Rock Interaction A. A. Balkema New York 1227–1230

    Google Scholar 

  • E.E. Roden (2004b) ArticleTitleAnalysis of long-term bacterial vs. chemical Fe(III) oxide reduction kinetics Geochim. Cosmochim. Acta 68 3205–3216 Occurrence Handle10.1016/j.gca.2004.03.028

    Article  Google Scholar 

  • E.E. Roden D.R. Lovley (1993) ArticleTitleDissimilatory Fe(III) reduction by the marine microorganismDesulfuromonas acetoxidans Appl. Environ. Microbiol. 59 734–742

    Google Scholar 

  • E.E. Roden M.M. Urrutia (1999) ArticleTitleFerrous iron removal promotes microbial reduction of crystalline iron(III) oxides Environ. Sci. Technol. 33 1847–1853 Occurrence Handle10.1021/es9809859

    Article  Google Scholar 

  • E.E. Roden J.M. Zachara (1996) ArticleTitleMicrobial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth Environ. Sci. Technol. 30 1618–1628 Occurrence Handle10.1021/es9506216

    Article  Google Scholar 

  • E.E. Roden M.M. Urrutia C.J. Mann (2000) ArticleTitleBacterial reductive dissolution of crystalline Fe(III) oxide in continuous-flow column reactors Appl. Environ. Microbiol. 66 1062–1065 Occurrence Handle10.1128/AEM.66.3.1062-1065.2000

    Article  Google Scholar 

  • J.N. Rooney-Varga R.T. Anderson J.L. Fraga D. Ringelberg D.R. Lovley (1999) ArticleTitleMicrobial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer Appl. Environ. Microbiol. 65 3056–3063

    Google Scholar 

  • R.A. Rossello-Mora F. Caccavo SuffixJr. N. Osterlehner N. Springer S. Spring D. Schuler W. Ludwig R. Amann M. Vannacanneyt K.H. Schleifer (1994) ArticleTitleIsolation and taxonomic characterization of a halotolerantfacultative anaerobic iron-reducing bacterium Syst. Appl. Microbiol. 17 569–573

    Google Scholar 

  • P.A. Rusin L. Quintana J.R. Brainard B.A. Strietelmeier C.D. Tait S.A. Ekberg P.D. Palmer T.W. Newton D.L. Clark (1994) ArticleTitleSolubilization of plutonium hydrous oxide by iron reducing bacteria Environ. Sci. Technol. 28 1686–1690 Occurrence Handle10.1021/es00058a021

    Article  Google Scholar 

  • Schwertmann U. and Taylor R.M. 1989. Iron oxides. Minerals in Soil Environments. Soil Science Society of AmericaMadison, Wisconsin.

  • U. Schwertmann D.G. Schulze E. Murad (1982) ArticleTitleIdentification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction, and mossbauer spectroscopy Soil Sci. Soc. Am. J. 46 869–874 Occurrence Handle10.2136/sssaj1982.03615995004600040040x

    Article  Google Scholar 

  • U. Schwertmann J. Friedl H. Stanjek (1999) ArticleTitleFrom Fe(III) ions to ferrihydrite and then to hematite J. Colloid Interf. Sci. 209 215–223 Occurrence Handle10.1006/jcis.1998.5899

    Article  Google Scholar 

  • D.T. Scott D.M. McKnight E.L. Blunt-Harris S.E. Kolesar D.R. Lovley (1998) ArticleTitleQuinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms Environ. Sci. Technol. 32 2984–2989 Occurrence Handle10.1021/es980272q

    Article  Google Scholar 

  • G.T. Seaborg (1993) ArticleTitleOverview of the actinide and lanthanide (the F) elements Radiochim. Acta 61 115–122

    Google Scholar 

  • J.M. Senko J.D. Istok J.M. Suflita L.R. Krumholz (2002) ArticleTitleIn-situ evidence for uranium immobilization and remobilization Environ. Sci. Technol. 36 1491–1496 Occurrence Handle10.1021/es011240x

    Article  Google Scholar 

  • J.M. Senko Y. Mohamed T.A. Dewers L.R. Krumholz (2005) ArticleTitleRole for Fe(III) minerals in nitrate-dependent microbial U(IV) oxidation Environ. Sci. Technol. 39 2529–2536 Occurrence Handle10.1021/es048906i

    Article  Google Scholar 

  • E.S. Shelobolina K. O’Neill K.T. Finneran L.A. Hayes D.R. Lovley (2003) ArticleTitlePotential for in situ bioremediation of a low-pH, high-nitrate uranium-contaminated groundwater Soil Sed. Contam. 12 865–884

    Google Scholar 

  • O. Snoeyenbos-West K.P. Nevin R.T. Anderson D.R. Lovley (2000) ArticleTitleEnrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments Microbial Ecol. 39 153–167 Occurrence Handle10.1007/s002480000018

    Article  Google Scholar 

  • K.L. Straub M. Benz B. Schink (2001) ArticleTitleIron metabolism in anoxic environments at near neutral pH FEMS Microbiol. Ecol. 34 181–186

    Google Scholar 

  • Y. Suzuki S.D. Kelly K.M. Kemner J.F. Banfield (2002) ArticleTitleNanometre-size products of uranium bioreduction Nature 419 134 Occurrence Handle10.1038/419134a

    Article  Google Scholar 

  • Y. Suzuki S.D. Kelly K.M. Kemner J.F. Banfield (2005) ArticleTitleDirect microbial reduction and subsequent preservation of uranium in natural near-surface sediment Appl. Environ. Microbiol. 71 1790–1797 Occurrence Handle10.1128/AEM.71.4.1790-1797.2005

    Article  Google Scholar 

  • B.M. Tebo A.Y. Obraztsova (1998) ArticleTitleSulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors FEMS Microbiol. Lett. 162 193–198

    Google Scholar 

  • B. Thamdrup (2000) ArticleTitleBacterial manganese and iron reduction in aquatic sediments Adv. Microbiol. Ecol. 16 41–84

    Google Scholar 

  • K.M. Towe W.F. Bradley (1967) ArticleTitleMineralogical constitution of colloidal ‘hydrous ferric oxides’ J. Colloid Interf. Sci. 24 384–392 Occurrence Handle10.1016/0021-9797(67)90266-4

    Article  Google Scholar 

  • M.J. Truex B.M. Peyton N.B. Valentine Y.A. Gorby (1997) ArticleTitleKinetics of U(VI) reduction by a dissimilatory Fe(III)-reducing bacterium under non-growth conditions Biotechnol. Bioeng. 55 490–496 Occurrence Handle10.1002/(SICI)1097-0290(19970805)55:3<490::AID-BIT4>3.0.CO;2-7

    Article  Google Scholar 

  • M.M. Urrutia E.E. Roden J.M. Zachara (1999) ArticleTitleInfluence of aqueous and solid-phase Fe(II) complexants on microbial reduction of crystalline iron(III) oxides Environ. Sci. Technol. 33 4022–4028 Occurrence Handle10.1021/es990447b

    Article  Google Scholar 

  • M. Vargas K. Kashefi E.L. Blunt-Harris D.R. Lovley (1998) ArticleTitleMicrobiological evidence for Fe(III) reduction on early earth Nature 395 65–67 Occurrence Handle10.1038/25720

    Article  Google Scholar 

  • R. Wade SuffixJr. T.J. DiChristina (2000) ArticleTitleIsolation of U(VI) reduction-deficient mutants of Shewanella putrefaciens FEMS Microbiol. Letts. 184 143–148

    Google Scholar 

  • J. Wan T.K. Tokunaga E. Brodie Z. Wang Z. Zheng D. Herman T.C. Hazen M.K. Firestone S.R. Sutton (2005) ArticleTitleReoxidation of bioreduced uranium under reducing conditions Environ. Sci. Technol. 39 6162–6169 Occurrence Handle10.1021/es048236g

    Article  Google Scholar 

  • P. Wersin M.F. Hochella SuffixJr. P. Persson G. Redden J.O. Leckie D.W. Harris (1994) ArticleTitleInteraction between aqueous uranium (VI) and sulfide minerals: Spectoscopic evidence for sorption and reduction Geochim. Cosmochim. Acta 58 2829–2843 Occurrence Handle10.1016/0016-7037(94)90117-1

    Article  Google Scholar 

  • B. Wielinga B. Bostick C.M. Hansel R.F. Rosenzweig S. Fendorf (2000) ArticleTitleInhibition of bacterially promoted uranium reduction: Ferric (hydr)oxides as competitive electron acceptors Environ. Sci. Technol. 34 2190–2195 Occurrence Handle10.1021/es991189l

    Article  Google Scholar 

  • R.E. Wildung S.W. Li C.J. Murray K.M. Krupka Y. Xie N.J. Hess E.E. Roden (2004) ArticleTitleTechnetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential FEMS Microbiol. Ecol. 49 151–162 Occurrence Handle10.1016/j.femsec.2003.08.016

    Article  Google Scholar 

  • J.M. Zachara J.K. Fredrickson L. Shu-Mei D.W. Kennedy S.C. Smith P.L. Gassman (1998) ArticleTitleBacterial reduction of crystalline Fe3+ oxides in single phase suspensions and subsurface materials Am. Mineral. 83 1426–1443

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Wilkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkins, M.J., Livens, F.R., Vaughan, D.J. et al. The Impact of Fe(III)-reducing Bacteria on Uranium Mobility. Biogeochemistry 78, 125–150 (2006). https://doi.org/10.1007/s10533-005-3655-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-005-3655-z

Keywords

Navigation