Skip to main content

Advertisement

Log in

The importance of microphytic composition on coarse woody debris for nematode colonization: a case study in a fluvial floodplain environment

  • Original paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Coarse woody debris (CWD) are an important structural feature of many aquatic ecosystems. This study focused on the relationships between nematode colonization and microphytic community structure on CWD. In situ investigations were performed using white willow branches introduced into the floodplain lake, a part of the large natural floodplain in the middle section of the Danube River (Europe) impacted by strong sandy and silt accumulations. Our results showed that CWD support rapid colonization and high species richness of microphytes, regardless of seasonality and flood-induced environmental changes. Successional stages during the accrual of microphytic communities were expressed. Nematode functional feeding group compositions closely followed microphytic composition. The epistrate feeder Chromadorina bioculata over-dominated in diatom-dominated communities with adnate/prostrate and stalk-forming species in spring and autumn. The complex structure of cyanobacterial mats associated with green algae and diatom assemblages in summer attracted suction feeders, represented by the Dorylaimidae family. The obtained results indicated that nematodes are involved in strong trophic coupling with a microbial habitat on CWD. The retention of CWD in aquatic environments or addition of CWD to systems with little or no wood may have important implications for the primary and secondary production in these ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ács É, Kiss KT, Szabó K, Makk J (2000) Short-therm colonization sequence of periphyton on glass slides in a large river (River Danube, near Budapest). Algol Stud 100:135–156

    Google Scholar 

  • Anagnostidis K, Komárek J (1985) Modern approach to the classification system of cyanophytes. 1. Introduction. Arch Hydrobiol Suppl 71:291–302

    Google Scholar 

  • Anagnostidis K, Komárek J (1988) Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Arch Hydrobiol Suppl 80:327–472

    Google Scholar 

  • APHA (American Public Health Association) (1992) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • Azim ME, Asaeda T (2005) Periphyton: structure, diversity and colonization. In: Azim ME, Verdegem MCJ, van Dam V, Beveridge MCM (eds) Periphyton: ecology, exploitation and management. CABI Publishing, Wallingford, pp 15–33

    Google Scholar 

  • Biggs BJF, Stevenson RJ, Lowe RL (1998) A habitat matrix conceptual model for stream periphyton. Arch Hydrobiol 143:21–56

    Google Scholar 

  • Bogut I, Vidaković J (2002) Differences in submerged and emergent eulittoral sediment biota of Lake Sakadaš (Kopački Rit Nature Park, Croatia). Nat Croat 11:157–170

    Google Scholar 

  • Bond NR, Sabater S, Glaister A, Roberts S, Vanderkru K (2006) Colonization of introduced timber by algae and invertebrates, and its potential role in aquatic ecosystem restoration. Hydrobiologia 556:303–316. doi:10.1007/s10750-005-1251-9

    Article  Google Scholar 

  • Buffan-Dubau E, Carman KR (2000) Diel feeding behavior of meiofauna and their relationships with microalgal resources. Limnol Oceanogr 45:381–395. doi:10.4319/lo.2000.45.2.0381

    Article  CAS  Google Scholar 

  • Coe HJ, Kiffney PM, Pess GR, Kloehn KK, McHnery ML (2009) Periphyton and invertebrate response to wood placement in large pacific coastal rivers. River Res Appl 25:1025–1035. doi:10.1002/rra.1201

    Article  Google Scholar 

  • Croll NA, Zullini A (1972) Observations on the bionomics of the freshwater nematode Chromadorina bioculata. J Nematol 4:256–260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eßer M (2006) Long-term dynamics of microbial biofilm communities of the river Rhine. Dissertation, University in Koln

  • Findlay S, Tank J, Dye S, Valett HM, Mulholland PJ, McDowell WH, Johnson SL, Hamilton SK, Edmonds J, Dodds WK, Bowden WB (2002) A cross-system comparison of bacterial and fungal biomass in detritus pools of headwater streams. Microb Ecol 43:55–66. doi:10.1007/s00248-001-1020-x

    Article  CAS  PubMed  Google Scholar 

  • Francis TB, Schindler DE (2006) Degradation of littoral habitats by residential development: woody debris in lakes of the Pacific Northwest and Midwest, United States. Ambio 35:274–280

    Article  PubMed  Google Scholar 

  • Giere O (2009) Meiobenthology: The microscopic motile fauna of aquatic sediments. Springer-Verlag, Berlin, p 527

    Google Scholar 

  • Hafner SD, Groffman PM, Mitchell MJ (2005) Leaching of dissolved organic carbon, dissolved organic nitrogen, and other solutes from coarse woody debris and litter in a mixed forest in New York State. Biogeochemistry 74:257–282. doi:10.1007/s10533-004-4722-6

    Article  CAS  Google Scholar 

  • Heip C, Warwick MR, Carr MR, Herman PMJ, Huys R, Smol N, Van Holsbeke K (1988) Analysis of community attributes of the benthic meiofauna of Frierfjord/Langesundfjord. Mar Ecol Prog Ser 46:171–180. doi:10.3354/meps046171

    Article  Google Scholar 

  • Hindak F, Cyrus Z, Marvan P, Javornicky P, Komárek J, Etll H, Rosa K, Sladečkova A, Popovsky J, Punčocharova M, Lhotsky O (1978) Slatkovodne riasy. Slovenske pedagogicke nakladelstvo, Bratislava

    Google Scholar 

  • Hoagland KD, Roemer SC, Rosowski JR (1982) Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). Am J Bot 69:188–213. doi:10.2307/2443006

    Article  Google Scholar 

  • Huber-Pestalozzi G (1962) Das Phytoplankton des Süßwassers. Systematik und Biologie. E. Schweizerbart’śche Verlagsbuchhandlung (Erwin Nägele), Stuttgart

  • Hustedt F (1976) Bacillariophyta. Otto Koeltz Science Publishers, Koenigstein

    Google Scholar 

  • Kaller MD, Kelso WE (2006) Short-term decompositional state does not influence use of wood by macroinvertebrates in subtropical, coastal plain streams. Hydrobiologia 571:157–167. doi:10.1007/s10750-006-0238-5

    Article  Google Scholar 

  • Kaller MD, Kelso WE (2007) Association of macroinvertebrate assemblages with dissolved oxygen concentration and wood surface area in selected subtropical streams of the southeastern USA. Aquat Ecol 41:95–110. doi:10.1007/s10452-006-9046-2

    Article  CAS  Google Scholar 

  • Komárek J, Anagnostidis K (1989) Modern approach to the classification system of cyanophytes. 4. Nostocales. Algol Stud 56:247–345

    Google Scholar 

  • Krammer K, Lange-Bertalot H (2008) Süßwasserflora von Mitteleuropa. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Spektrum Akademischer Verlag Heidelberg

  • Krebs CJ (1999) Ecological methodology, 2nd edn. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, New York

    Book  Google Scholar 

  • Liboriussen L (2003) Production, regulation and ecophysiology of periphyton in shallow freshwater lakes. Dissertation, National Environmental Research Institute, Department of Freshwater Ecology, University of Aarhus, Faculty of Science, Denmark

  • Luttenton MR, Baisden C (2006) The relationships among disturbance, substratum size and periphyton community structure. Hydrobiologia 561:111–117. doi:10.1007/s10750-005-1608-0

    Article  Google Scholar 

  • MacNally R, Parkinson A, Horrocks G, Young M (2002) Current loads of coarse woody debris on Southeastern Australian Floodplains: evaluation of change and implications for restoration. Restor Ecol 10:627–635. doi:10.1046/j.1526-100X.2002.01043.x

    Article  Google Scholar 

  • Majdi N, Traunspurger W, Boyer S, Mialet B, Tackx M, Fernandez R, Gehner S, Ten-Hage L, Buffan-Dubau E (2011) Response of biofilm-dwelling nematodes to habitat changes in the Garonne River, France: influence of hydrodynamics and microalgal availability. Hydrobiologia 673:229–244. doi:10.1007/s10750-011-0781-6

    Article  CAS  Google Scholar 

  • Majdi N, Tackx M, Traunspurger W, Buffan-Dubau E (2012) Feeding of biofilm-dwelling nematodes examined using HPLC-analysis of gut pigment contents. Hydrobiologia 680:219–232. doi:10.1007/s10750-011-0920-0

    Article  CAS  Google Scholar 

  • Mihaljević M, Žuna Pfeiffer T (2012) Colonization of periphyton algae in a temperate floodplain lake under a fluctuating spring hydrological regime. Fundam Appl Limnol 180:13–25. doi:10.1127/1863-9135/2012/0210

    Google Scholar 

  • Mihaljević M, Getz D, Tadić Z, Živanović B, Gucunski D, Topić J, Kalinović I, Mikuska J (1999) Kopački Rit––Research Survey and Bibliography. Croatian Academy of Arts and Sciences, Zagreb

    Google Scholar 

  • O’Connor JE, Jones MA, Haluska TL (2003) Floodplain and channel dynamics of the Quinault and Queets Rivers, Washington, USA. Geomorphology 51:31–59. doi:10.1016/S0169-555X(02)00324-0

    Article  Google Scholar 

  • OECD (1982) Eutrophication of waters. Monitoring, Assessment and Control. OECD Publications, Paris

    Google Scholar 

  • Padisák J, Borics G, Fehér G, Grigorszky I, Oldal I, Schmidt A, Zámbóné-Doma Z (2003) Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502:157–168. doi:10.1023/B:HYDR.0000004278.10887.40

    Article  Google Scholar 

  • Pielou EC (1969) An introduction to mathematical ecology. Wiley, New York

    Google Scholar 

  • Ristau K, Traunspurger W (2011) Relation between nematode communities and trophic state in southern Swedish lakes. Hydrobiologica 663:121–133. doi:10.1007/s10750-010-0564-5

    Article  Google Scholar 

  • Sabater S, Gregory SV, Sedell JR (1998) Community dynamics and metabolism of benthic algae colonizing wood and rock substrata in a forest stream. J Phycol 34:561–567. doi:10.1046/j.1529-8817.1998.340561.x

    Article  Google Scholar 

  • Sánchez M, Pizarro H, Tell G, Izaguirre I (2010) Relative importance of periphyton and phytoplankton in turbid and clear vegetated shallow lakes from the Pampa Plain (Argentina): a comparative experimental study. Hydrobiologia 646:271–280. doi:10.1007/s10750-010-0181-3

    Article  Google Scholar 

  • Schneck F, Melo AS (2012) Hydrological disturbance intensity overrides substrate roughness effects on the resistance and resilience of stream benthic algae. Freshw Biol 57:1678–1688. doi:10.1111/j.1365-2427.2012.02830.x

    Article  Google Scholar 

  • Schneider KN, Winemiller KO (2008) Structural complexity of woody debris patches influences fish and macroinvertebrate species richness in a temperate floodplain-river system. Hydrobiologia 610:235–244. doi:10.1007/s10750-008-9438-5

    Article  Google Scholar 

  • Seinhorst W (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4:67–69. doi:10.1163/187529259X00381

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University Illionis Press, Urbana

    Google Scholar 

  • Stilinović B, Plenković-Moraj A (1995) Bacterial and phytoplanktonic research of Ponikve artificial lake on the island of Krk. Period Biol 97:351–358

    Google Scholar 

  • Strickland JDH, Parsons TR (1968) A practical hand-book of seawater analysis. Fish Res Board Can Bull 167:1–310

    Google Scholar 

  • Stuck MS, Ward AK (1991) Blue-green algal mats in a small stream. J Phycol 27:692–698. doi:10.1111/j.0022-3646.1991.00692.x

    Article  Google Scholar 

  • Tekwani N, Majdi N, Mialet B, Tornès E, Urrea-Clos G, Buffan-Dubau E, Sabater S, Tackx M (2013) Contribution of epilithic diatoms to benthic-pelagic coupling in a temperate river. Aquat Microb Ecol 69:47–57. doi:10.3354/ame01616

    Article  Google Scholar 

  • Traunspurger W (1997) Bathymetric, seasonal and vertical distribution of the feeding-types of nematodes in an oligotrophic lake. Vie et Milieu 47:1–7

    Google Scholar 

  • Traunspurger W (2000) The biology and ecology of lotic nematodes. Freshw Biol 44:29–45. doi:10.1046/j.1365-2427.2000.00585.x

    Article  Google Scholar 

  • Traunspurger W (2002) Nematoda. In: Rundle SD, Robertson AL, Schmid-Araya JM (eds) Freshwater Meiofauna: biology and ecology. Backhuys Publishers, Leiden, pp 63–104

    Google Scholar 

  • UNESCO (1966) Determinations of photosynthetic pigments in seawater. Report of SCOR––UNESCO Working Group 17, Monographs on oceanographic methodology, Paris

  • Vermaat JE (2005) Periphyton dynamics and influencing factors. In: Azim ME, Verdegem MCJ, van Dam AA, Beveridge MCM (eds) Periphyton: ecology, exploitation and management. CABI Publishing, Wallingford, pp 35–50

    Google Scholar 

  • Vidaković J, Bogut I (2006) Aquatic macrophytes as a habitat for free-living nematodes. Nematology 8:691–701. doi:10.1163/156854106778877956

    Article  Google Scholar 

  • Vidaković J, Bogut I (2007) Periphyton nematode assemblages in association with Myriophyllum spicatum L. in Lake Sakadaš, Croatia. Russ J Nematol 15:78–88

    Google Scholar 

  • Vidaković J, Palijan G, Čerba D (2011) Relationship between nematode community and biomass and composition of periphyton developing on artificial substrates in floodplain lake. Pol J Ecol 29:387–398

    Google Scholar 

  • Wondzell SM, Bisson PA (2003) Influence of wood on aquatic biodiversity. Am Fish Soc Symp 37:249–263

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Croatian Ministry of Science, Education and Sports, research project No. 285-0000000-2674. We are grateful to Borna Louvar for field and laboratory assistance. We are grateful to Makso Herman for language revision. We also wish to thank the Handling Editor and anonymous reviewers for their constructive comments and helpful suggestions which substantially improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Žuna Pfeiffer.

Additional information

Communicated by Dirk Sven Schmeller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihaljević, M., Žuna Pfeiffer, T., Vidaković, J. et al. The importance of microphytic composition on coarse woody debris for nematode colonization: a case study in a fluvial floodplain environment. Biodivers Conserv 24, 1711–1727 (2015). https://doi.org/10.1007/s10531-015-0889-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0889-5

Keywords

Navigation