Skip to main content
Log in

Non-native species litter reduces germination and growth of resident forbs and grasses: allelopathic, osmotic or mechanical effects?

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Non-native plant species may contain allelopathic substances that might help to out-compete native vegetation. These allelochemicals may be released from live or dead plant tissues and be accumulated in the soil. We tested whether non-native species leaf litter and their leachates reduced seedling establishment and growth of native species. We subjected seeds of six native species to the effect of litter leachates of three of the most important invasive plants in Europe and to mannitol solutions with similar osmotic potential in germination chamber experiments. Additionally, we measured the effect of the same litter on emergence and growth of the native species in an outdoor pot experiment. Litter leachates delayed and reduced germination and affected initial root growth of all native species. The effects of leachates were significantly higher than those of mannitol, indicating the action of toxic, most probably allelochemical substances. Emergence of seedlings in pots was also reduced, but total biomass per pot was not affected and biomass per seedling increased. Allelochemicals may affect germination and early stages of seedling recruitment. However, these negative effects seem to cease shortly after germination, when other mechanisms such as competition may be more important. Consequently, litter-borne allelochemicals are unlikely to drive the invasion of the studied non-native species, but they may contribute to maintain mono-dominant stands reinforcing invasion success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amatangelo KL, Dukes JS, Field CB (2008) Responses of a California annual grassland to litter manipulation. J Veg Sci 19:605–612

    Article  Google Scholar 

  • Baležentienė L (2012) Inhibitory effects of invasive Heracleum sosnowskyi on rapeseed and ryegrass germination. Allelopath J 30:197–208

    Google Scholar 

  • Barney JN, Hay AG, Weston LA (2005) Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris). J Chem Ecol 31:247–265

    Article  CAS  PubMed  Google Scholar 

  • Barritt AR, Facelli JM (2001) Effects of Casuarina pauper litter and grove soil on emergence and growth of understorey species in arid lands of South Australia. J Arid Environ 49:569–579

    Article  Google Scholar 

  • Baskin CC, Baskin JM (2001) Seeds—ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  • Belote RT, Jones RH (2009) Tree leaf litter composition and nonnative earthworms influence plant invasion in experimental forest floor mesocosms. Biol Invasions 11:1045–1052

    Article  Google Scholar 

  • Bonanomi G, Sicurezza MG, Caporaso S et al (2006) Phytotoxicity dynamics of decaying plant materials. New Phytol 169:571–578

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Incerti G, Barile E et al (2011) Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects: evidence from solid-state 13C NMR spectroscopy. New Phytol 191:1018–1030

    Article  CAS  PubMed  Google Scholar 

  • Bongard C (2012) A review of the influence of root-associating fungi and root exudates on the success of invasive plants. NeoBiota 14:21–45

    Article  Google Scholar 

  • Bosy JL, Reader RJ (1995) Mechanisms underlying the suppression of forb seedlings by grass (Poa pratensis) litter. Funct Ecol 9:635–639

    Article  Google Scholar 

  • Bousquet-Mélou A, Louis S, Robles C et al (2005) Allelopathic potential of Medicago arborea, a Mediterranean invasive shrub. Chemoecology 15:193–198

    Article  Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523

    Article  CAS  PubMed  Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Article  Google Scholar 

  • Chung I, Ahn J, Yun S (2001) Assessment of allelopathic potential of barnyard grass (Echinochloa crus-galli) on rice (Oryza sativa L.) cultivars. Crop Protect 20:921–928

    Article  Google Scholar 

  • Cook RE (1980) Germination and size-dependent mortality in Viola blanda. Oecologia 47:115–117

    Article  Google Scholar 

  • Csiszár Á, Korda M, Dávid S, et al (2012) Study on allelopathic potential of some invasive and potentially invasive neophytes. In: International scientific conference on sustainable development and ecological footprint, University of West Hungary, Sopron, Hungary

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Article  Google Scholar 

  • Del Fabbro C, Güsewell S, Prati D (2014) Allelopathic effects of three plant invaders on germination of native species: a field study. Biol Invasions 16:1035–1042

    Article  Google Scholar 

  • Dericks G (2006) Ökophysiologie und standörtliche Einbindung neophytenreicher Gattungen (Impatiens, Solanum) der Rheintalaue. Faculty of Mathematics Natural Sciences. Heinrich-Heine University, Düsseldorf, Germany

  • Donath TW, Eckstein RL (2008) Grass and oak litter exert different effects on seedling emergence of herbaceous perennials from grasslands and woodlands. J Ecol 96:272–280

    Article  Google Scholar 

  • Donath TW, Hölzel N, Bissels S et al (2004) Perspectives for incorporating biomass from non-intensively managed temperate flood-meadows into farming systems. Agric Ecosyst Environ 104:439–451

    Article  Google Scholar 

  • Eckstein RL, Donath TW (2005) Interactions between litter and water availability affect seedling emergence in four familial pairs of floodplain species. J Ecol 93:807–816

    Article  Google Scholar 

  • Eckstein RL, Pereira E, Milbau A et al (2011) Predicted changes in vegetation structure affect the susceptibility to invasion of bryophyte-dominated subarctic heath. Ann Bot 108:177–183

    Article  PubMed Central  PubMed  Google Scholar 

  • Eckstein RL, Ruch D, Otte A et al (2012) Invasibility of a nutrient-poor pasture through resident and non-resident herbs is controlled by litter, gap size and propagule pressure. PLoS One 7:e41887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eppinga MB, Molofsky J (2013) Eco-evolutionary litter feedback as a driver of exotic plant invasion. Perspect Plant Ecol Evol Syst 15:20–31

    Article  Google Scholar 

  • Equihua M, Usher MB (1993) Impact of carpets of the invasive moss Campylopus interflexus on Calluna vulgaris regeneration. J Ecol 81:359–365

    Article  Google Scholar 

  • Facelli JM, Pickett STA (1991a) Indirect effects of litter on woody seedlings subject to herb competition. Oikos 62:129–138

    Article  Google Scholar 

  • Facelli JM, Pickett STA (1991b) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32

    Article  Google Scholar 

  • Facelli JM, Pickett STA (1991c) Plant litter: light interception and effects on an old-field plant community. Ecology 72:1024–1031

    Article  Google Scholar 

  • Falinski J (1998) Invasive alien plants and vegetation dynamics. In: Starfinger U, Edwards K, Kowarik I, Williamson M (eds) Plant invasions: ecological mechanisms and human responses. Backhuys, Leiden, pp 3–21

    Google Scholar 

  • Farrer EC, Goldberg DE (2009) Litter drives ecosystem and plant community changes in cattail invasion. Ecol Appl 19:398–412

    Article  PubMed  Google Scholar 

  • Fenner M, Thompson K (2005) The ecology of seed. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gerike S, Kurmies B (1952) Die kolorimetrische Phosphorsäurebestimmung mit Ammonium-Vanadat-Molybdat und ihre Anwendung in der Pflanzenanalyse. Z Pflanzenernähr Düng Bodenkd 59:235–247

    Google Scholar 

  • Goel U, Saxena D, Kumar B (1989) Comparative study of allelopathy as exhibited by Prosopis juliflora swartz and Prosopis cineraria (L) druce. J Chem Ecol 15:591–600

    Article  CAS  PubMed  Google Scholar 

  • Goldberg DE, Scheiner SM (2001) ANOVA and ANCOVA: field competition experiments. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments, 2nd edn. Oxford University Press Inc, Oxford, pp 77–98

    Google Scholar 

  • Grime J (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910

    Article  Google Scholar 

  • Gross KL (1984) Effects of seed size and growth form on seedling establishment of six monocarpic perennial plants. J Ecol 72:369–387

    Article  Google Scholar 

  • Hofland-Zijlstra JD, Berendse F (2010) Effects of litters with different concentrations of phenolics on the competition between Calluna vulgaris and Deschampsia flexuosa. Plant Soil 327:131–141

    Article  CAS  Google Scholar 

  • Hood GM (2010) PopTools version 3.2.5. http://www.poptools.org

  • Hovstad KA, Ohlson M (2008) Physical and chemical effects of litter on plant establishment in semi-natural grasslands. Plant Ecol 196:251–260

    Article  Google Scholar 

  • Hovstad KA, Ohlson M (2009) Conspecific versus heterospecific litter effects on seedling establishment. Plant Ecol 204:33–42

    Article  Google Scholar 

  • Hulme PE, Bremner ET (2005) Assessing the impact of Impatiens glandulifera on riparian habitats: partitioning diversity components following species removal. J Appl Ecol 43:43–50

    Article  Google Scholar 

  • Hüls J, Otte A, Eckstein RL (2007) Population life-cycle and stand structure in dense and open stands of the introduced tall herb Heracleum mantegazzianum. Biol Invasions 9:799–811

    Article  Google Scholar 

  • Inderjit, Cadotte MW, Colautti RI (2005) The ecology of biological invasions: past, present and future. In: Inderjit (ed) Invasive plants: ecological and agricultural aspects. Birkhäuser Verlag, Basel, pp 19–43

  • Inderjit, Seastedt TR, Callaway RM et al (2008) Allelopathy and plant invasions: traditional, congeneric, and bio-geographical approaches. Biol Invasions 10:875–890

  • Inderjit, Wardle DA, Karban R et al (2011) The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 26:655–662

  • Kaur R, Gonzales WL, Llambi LD et al (2012) Community impacts of Prosopis juliflora invasion: biogeographic and congeneric comparisons. PLoS One 7:e44966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Kowarik I, Boye P (2003) Biologische Invasionen-Neophyten und Neozoen in Mitteleuropa. Ulmer, Stuttgart

    Google Scholar 

  • Krogmeier M, Bremner J (1989) Effects of phenolic acids on seed germination and seedling growth in soil. Biol Fertil Soils 8:116–122

    CAS  Google Scholar 

  • Lamb EG (2008) Direct and indirect control of grassland community structure by litter, resources, and biomass. Ecology 89:216–225

    Article  PubMed  Google Scholar 

  • Lambdon PW, Pyšek P, Basnou C et al (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80:101–149

    Google Scholar 

  • Lehle FR, Frans R, McClelland M (1983) Allelopathic potential of Hope white lupine (Lupinus albus) herbage and herbage extracts. Weed Sci 31:513–519

  • Lobstein A, Brenne X, Feist E et al (2001) Quantitative determination of naphthoquinones of Impatiens species. Phytochem Anal 12:202–205

    Article  CAS  PubMed  Google Scholar 

  • Longo G, Seidler TG, Garibaldi LA et al (2013) Functional group dominance and identity effects influence the magnitude of grassland invasion. J Ecol 101:1114–1124

    Article  Google Scholar 

  • Lortie CJ, Brooker RW, Choler P et al (2004) Rethinking plant community theory. Oikos 107:433–438

    Article  Google Scholar 

  • Loydi A, Zalba SM, Distel RA (2012) Vegetation change in response to grazing exclusion in montane grasslands, Argentina. Plant Ecol Evol 145:313–322

    Article  Google Scholar 

  • Loydi A, Eckstein RL, Otte A et al (2013) Effects of litter on seedling establishment in natural and semi-natural grasslands: a meta-analysis. J Ecol 101:454–464

    Article  Google Scholar 

  • Loydi A, Lohse K, Otte A et al (2014) Distribution and effects of tree leaf litter on vegetation composition and biomass in a forest–grassland ecotone. J Plant Ecol 7:264–275

    Article  Google Scholar 

  • Manly BF (2001) Randomization, bootstrap and Monte Carlo methods in biology. Chapman and Hall, London

    Google Scholar 

  • Maron JL, Vilà M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–373

    Article  Google Scholar 

  • McNaughton SJ, Oesterheld M, Frank DA et al (1989) Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Ecol Monogr 53:291–320

  • Meisner A, de Boer W, Cornelissen JH et al (2012) Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients. PLoS One 7:e31596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Minchinton TE, Simpson JC, Bertness MD (2006) Mechanisms of exclusion of native coastal marsh plants by an invasive grass. J Ecol 94:342–354

    Article  Google Scholar 

  • Moenickes S, Thiele J (2013) What shapes giant hogweed invasion? Answers from a spatio-temporal model integrating multiscale monitoring data. Biol Invasions 15:61–73

  • Muzquiz M, de la Cuadra C, Cuadrado C et al (1994) Herbicide-like effect of Lupinus alkaloids. Ind Crops Prod 2:273–280

    Article  CAS  Google Scholar 

  • Otte A, Maul P (2005) Verbreitungsschwerpunkte und strukturelle Einnischung der Stauden-Lupine (Lupinus polyphyllus Lindl.) in Bergwiesen der Rhön. Tuexenia 25:151–182

    Google Scholar 

  • Otte A, Eckstein RL, Thiele J (2007) Heracleum mantegazzianum in its primary distribution range of the Western Greater Caucasus. In: Pyšek P, Cock M, Nentwig W, Ravn HP, Wade M (eds) Ecology and management of giant hogweed (Heracleum mantegazzianum). CAB International, Wallingford, pp 20–41

    Chapter  Google Scholar 

  • Pergl J, Hüls J, Perglova I et al (2007) Population dynamics of Heracleum mantegazzianum. In: Pyšek P, Cock MJW, Nentwig W, Ravn HP (eds) Ecology and management of giant hogweed (Heracleum mantegazzianum). CABI, Wallingford, pp 92–111

    Chapter  Google Scholar 

  • Pyšek P, Prach K (1995) Invasion dynamics of Impatiens glandulifera—a century of spreading reconstructed. Biol Conserv 74:41–48

    Article  Google Scholar 

  • Ranal MA, Santana DG (2006) How and why to measure the germination process? Rev Bras Bot 29:1–11

    Article  Google Scholar 

  • Rotundo JL, Aguiar MR (2005) Litter effects on plant regeneration in arid lands: a complex balance between seed retention, seed longevity and soil-seed contact. J Ecol 93:829–838

    Article  Google Scholar 

  • Ruprecht E, Donath TW, Otte A et al (2008) Chemical effects of a dominant grass on seed germination of four familial pairs of dry grassland species. Seed Sci Res 18:239–248

    Article  Google Scholar 

  • Ruprecht E, Józsa J, Ölvedi TB et al (2010) Differential effects of several “litter” types on the germination of dry grassland species. J Veg Sci 21:1069–1081

    Article  Google Scholar 

  • Scharfy D, Funk A, Venterink HO et al (2011) Invasive forbs differ functionally from native graminoids, but are similar to native forbs. New Phytol 189:818–828

    Article  PubMed  Google Scholar 

  • Schmiede R, Ruprecht E, Eckstein RL et al (2013) Establishment of rare flood meadow species by plant material transfer: experimental tests of threshold amounts and the effect of sowing position. Biol Conserv 159:222–229

    Article  Google Scholar 

  • Tanner RA, Gange AC (2013) The impact of two non-native plant species on native flora performance: potential implications for habitat restoration. Plant Ecol 214:423–432

  • Thiele J, Otte A (2006) Analysis of habitats and communities invaded by Heracleum mantegazzianum Somm. et Lev. (Giant Hogweed) in Germany. Phytocoenologia 36:281–320

    Article  Google Scholar 

  • Thiele J, Isermann M, Otte A et al (2010) Competitive displacement or biotic resistance? Disentangling relationships between community diversity and invasion success of tall herbs and shrubs. J Veg Sci 21:213–220

    Article  Google Scholar 

  • Vaccaro LE, Bedford BL, Johnston CA (2009) Litter accumulation promotes dominance of invasive species of cattails (Typha spp.) in Lake Ontario wetlands. Wetlands 29:1036–1048

    Article  Google Scholar 

  • Violle C, Richarte J, Navas M-L (2006) Effects of litter and standing biomass on growth and reproduction of two annual species in a Mediterranean old-field. J Ecol 94:196–205

    Article  Google Scholar 

  • von Ende CN (1993) Repeated-measures analysis: growth and other time-dependent measures. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman & Hall, London, pp 113–137

    Google Scholar 

  • Vrchotová N, Šerá B, Krejčová J (2011) Allelopathic activity of extracts from Impatiens species. Plant Soil Environ 57:57–60

    Google Scholar 

  • Wallenstein MD, Hess AM, Lewis MR et al (2010) Decomposition of aspen leaf litter results in unique metabolomes when decomposed under different tree species. Soil Biol Biochem 42:484–490

    Article  CAS  Google Scholar 

  • Wardle D, Nicholson K, Ahmed M (1992) Comparison of osmotic and allelopathic effects of grass leaf extracts on grass seed germination and radicle elongation. Plant Soil 140:315–319

    Article  Google Scholar 

  • Wardle AW, Nilsson MC, Gallet C et al (1998) An ecosystem-level perspective of allelopathy. Biol Rev 73:305–319

    Article  Google Scholar 

  • Weinig C (2000) Differing selection in alternative competitive environments: shade-avoidance responses and germination timing. Evolution 54:124–136

    Article  CAS  PubMed  Google Scholar 

  • Wille W, Thiele J, Walker EA et al (2013) Limited evidence for allelopathic effects of Giant Hogweed on germination of native herbs. Seed Sci Res 23:157–162

    Article  CAS  Google Scholar 

  • Wink M (1983) Inhibition of seed germination by quinolizidine alkaloids. Planta 158:365–368

    Article  CAS  PubMed  Google Scholar 

  • Xiong S, Nilsson C (1999) The effects of plant litter on vegetation: a meta-analysis. J Ecol 87:984–994

    Article  Google Scholar 

  • Yelenik SG, Levine JM (2010) Processes limiting native shrub recovery in exotic grasslands after non-native herbivore removal. Restor Ecol 18:418–425

    Article  Google Scholar 

  • Zarnetske PL, Gouhier TC, Hacker SD et al (2013) Indirect effects and facilitation among native and non‐native species promote invasion success along an environmental stress gradient. J Ecol 101:905–915

Download references

Acknowledgments

This work was partly funded by the Alexander von Humboldt Foundation by means of a postdoctoral fellowship (A. L.). We thank Jafargholi Imani, Hans-Werner Koyro, Lena Kretz, Roland Pfanschilling, Diedrich Steffens and Joseph Scholz-vom Hofe for invaluable help during the experiment. Travis Belote and two anonymous reviewers supplied insightful comments, which significantly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Loydi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loydi, A., Donath, T.W., Eckstein, R.L. et al. Non-native species litter reduces germination and growth of resident forbs and grasses: allelopathic, osmotic or mechanical effects?. Biol Invasions 17, 581–595 (2015). https://doi.org/10.1007/s10530-014-0750-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-014-0750-x

Keywords

Navigation