Skip to main content
Log in

Cryptic species of the Eucypris virens species complex (Ostracoda, Crustacea) from Europe have invaded Western Australia

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Eucypris virens, an ostracod with mixed reproduction and Holarctic distribution, forms a species complex with more than 35 cryptic species in Europe. Here, we analysed COI and LSU DNA sequence data from Western Australian E. virens to distinguish between the possibilities that vicariant processes have led to the formation of Australian E. virens species or that these ostracods have been introduced into Western Australia. Phylogenetic reconstructions, genetic networks and estimates of genetic distances all show clearly that Western Australian and European E. virens are very closely related. Some haplotypes are identical, others are only separated by one or two mutational steps. Among the Western Australian representatives of E. virens, three phylogenetic clades can be distinguished. We identified three European cryptic species as ancestors for two of the Western Australian clades and one close relative to the third Western Australian clade. We therefore conclude that E. virens has been introduced into Western Australia, most likely from western Europe, and did not diverge in Australia. In Europe, E. virens shows a typical pattern of geographic parthenogenesis while we found only asexual populations in Western Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamowicz SJ, Petrusek A, Colbourne JK, Hebert PDN, Witt JDS (2009) The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed freshwater zooplankton genus. Mol Phyl Evol 50:423–436

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bamford M, Watkins D, Bancroft W, Tischler G, Wahl J (2006) Migratory shorebirds of the East Asian–Australasian Flyway; population estimates and internationally important sites. Wetlands International Global Series, Wetlands International, Wageningen

    Google Scholar 

  • Barclay MH (1966) An ecological study of a temporary pond near Auckland, New Zealand. Aust J Mar Freshw Res 17:239–258. doi:10.1071/MF9660239

    Article  Google Scholar 

  • Bode SNS, Lamatsch DK, Martins MJF, Schmit O, Vandekerkhove J, Mezquita F, Namiotko T, Rossetti G, Schön I, Butlin RK, Martens K (2010) Exceptional cryptic diversity and multiple origins of parthenogenesis in a freshwater ostracod. Mol Phylogenet Evol 5:542–552

    Article  Google Scholar 

  • Brandao NS, Sauer J, Schön I (2010) Circumantarctic distribution in Southern Ocean benthos? A genetic test using the genus Macroscapha (Crustacea, Ostracoda) as a model. Mol Phylogenet Evol 55:1055–1069

    Article  PubMed  Google Scholar 

  • Bronshtein ZS (1947) Freshwater Ostracoda. Fauna of the USSR. Crustaceans, vol II, Number I. [English edition (1988)]. Amerind Publications, New Delhi

  • Cale DJ, Halse SA, Walker CD (2004) Wetland monitoring in the Wheatbelt of south-west Western Australia: site descriptions, waterbird, aquatic invertebrate and groundwater data. Conserv Sci West Aust 5:20–135

    Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  PubMed  CAS  Google Scholar 

  • Davis J, Christidis F (1997) A guide to wetland invertebrates of southwestern Australia. Western Australian Museum, Perth

    Google Scholar 

  • De Deckker P (1977) The distribution of the “giant” ostracods (family: Cyprididae, Baird 1845) endemic to Australia. In: Löffler H, Danielopol D (eds) Aspects of ecology and zoogeography of recent and fossil ostracods. Junk, The Hague, pp 285–294

    Google Scholar 

  • De Deckker P (1981) Ostracoda from Australian inland waters—notes on taxonomy and ecology. Trans R Soc Victoria 93:43–85

    Google Scholar 

  • De Deckker P (1983) Notes on the ecology and distribution of ostracods in Australia. Hydrobiologia 106:223–234

    Article  Google Scholar 

  • Decaestecker E, De Meester L, Mergeay J (2009) Cyclical parthenogenesis in Daphnia: sexual versus asexual reproduction. In: Schön I, Martens K, Van Dijk P (eds) Lost sex. The evolutionary biology of parthenogenesis. Springer Academic, Dordrecht, pp 295–316

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Estoup A, Guillemaud T (2010) Invited review: reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    PubMed  CAS  Google Scholar 

  • Geddes MC, De Deckker P, Williams WD, Morton DW, Topping M (1981) On the chemistry and biota of some saline lakes in Western Australia. Hydrobiologia 82:201–222

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) PhyML—a simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Heethoff M, Domes K, Laumann M, Maraun M, Norton RA, Scheu S (2006) High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). J Evol Biol 20:392–402

    Article  Google Scholar 

  • Heethoff M, Roy AN, Scheu S, Maraun M (2009) Parthenogenesis in oribatid mites (Acari, Oribatida): evolution without sex. In: Schön I, Martens K, Van Dijk P (eds) Lost sex. The evolutionary biology of parthenogenesis. Springer Academic, Dordrecht, pp 241–258

    Google Scholar 

  • Horne DJ (2007) A mutual temperature range method for Quaternary palaeoclimatic analysis using European nonmarine Ostracoda. Quat Sci Rev 26:1398–1415

    Article  Google Scholar 

  • Horne DJ, Martens K (1999) Geographical parthenogenesis in European non-marine ostracods: post-glacial invasion or Holocene stability? Hydrobiologia 391:1–7

    Article  Google Scholar 

  • Horne DJ, Baltanas A, Paris G (1998) Geographical distribution of reproductive modes in living non-marine ostracods. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys, Leiden, pp 77–99

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Loxdale H (2009) What’s in a clone. The rapid evolution of aphid asexual lineages in relation to geography, host plant adaptation and resistance to pesticides. In: Schön I, Martens K, Van Dijk P (eds) Lost sex. The evolutionary biology of parthenogenesis. Springer Academic, Dordrecht, pp 535–558

    Google Scholar 

  • Martens K (1998) Sex and ostracods: a new synthesis. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys, Leiden, pp 295–321

    Google Scholar 

  • Martens K, Rossetti G, Baltanas A (1998) Reproductive modes and taxonomy. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys, Leiden, pp 197–214

    Google Scholar 

  • Martens K, Rossetti G, Horne DJ (2003) How ancient are ancient asexuals? Proc R Soc Lond B 270:723–729

    Article  Google Scholar 

  • Martens K, Schön I, Meisch C, Horne DJ (2008) Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 595:185–193

    Article  Google Scholar 

  • Maynard Smith J (1998) Evolutionary genetics, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Meisch C (2000) Freshwater Ostracoda of Western and Central Europe. Süsswasserfauna von Mitteleuropa 8/3. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Pinder AM, Halse SA, McRae JM, Shiel RJ (2004) Aquatic invertebrate assemblages of wetlands and rivers in the wheatbelt region of Western Australia. Rec West Aust Mus Suppl 67:7–37

    Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Rossi V, Schön I, Butlin RK, Menozzi P (1998) Clonal genetic diversity. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys, Leiden, pp 257–274

    Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  • Schön I (2007) Did Pleistocene glaciations shape genetic patterns of European ostracods? A phylogeograpic analysis of two species with asexual reproduction. Hydrobiologia 575:30–50

    Article  Google Scholar 

  • Schön I, Gandolfi A, Di Masso E, Rossi V, Griffiths HI, Martens K, Butlin RK (2000) Persistence of asexuality through mixed reproduction in Eucypris virens (Crustacea, Ostracoda). Heredity 84:161–169

    Article  PubMed  Google Scholar 

  • Schön I, Rossetti G, Martens K (2009) Darwinulid ostracods: ancient asexual scandals or scandalous gossip? In: Schön I, Martens K, Van Dijk P (eds) Lost sex. The evolutionary biology of parthenogenesis. Springer Academic, Dordrecht, pp 217–240

    Google Scholar 

  • Schön I, Martens K, Halse S (2010) Genetic diversity in Australian ancient asexual Vestalenula (Ostracoda, Darwinulidae)—little variability down-under. Hydrobiologia 641:59–70

    Article  Google Scholar 

  • Serra M, Snell TW (2009) Sex loss in rotifers. In: Schön I, Martens K, Van Dijk P (eds) Lost sex. The evolutionary biology of parthenogenesis. Springer Academic, Dordrecht, pp 281–294

    Google Scholar 

  • Smith MJ, Kay WR, Edward DHD, Papa PJ, Richardson K, St J, Simpson JC, Pinder AM, Cale DJ, Horwitz PHJ, Davis JA, Yung FH, Norris RH, Halse SA (1999) AusRivAS: using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshw Biol 41:269–282

    Article  Google Scholar 

  • Tait CJ, Daniels CB, Hill RS (2005) Changes in species assemblages within the Adelaide metropolitan area, Australia, 1836–2002. Ecol Appl 15:346–359

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetic analysis using likelihood, distance and parsimony methods. Mol Biol Evol. doi:10.1093/molbev/msr121

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by an ABRS-grant (nr RF211-33: ‘Biodiversity and taxonomy of Ostracoda (Crustacea) from temporary water bodies of inland Western Australia’) and of the Edith Cowan University Industry Collaboration grant. K.M. and I.S. are grateful to Bennelongia Pty Ltd for financial support during their scientific stay in Perth (2010) and acknowledge the financial contribution of the FWO Vlaanderen (Fund for Scientific Research, Flanders) for their travel grants in 2010 (V4.172.10N and V4.173.10N). K.M. and I.S. also acknowledge the financial contribution of projects 1.5.172.09 (krediet aan navorsers) and G.0118.03N (projectonderzoek) of the FWO Vlaanderen (Fund for Scientific Research, Flanders). A.K. was supported by Academic Study Leave funding from the School of Natural Sciences and the Centre for Ecosystem Management, Edith Cowan University. The database of the European E. virens distribution originated from an EU Marie Curie Research Training Network ‘SexAsex’ (from Sex to Asex: a case study on interactions between sexual and asexual reproduction, contract MRTN-CT-2004-512492) of which K.M. was PI. We thank Kristiaan Hoedemakers for technical help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Koenders.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 103 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenders, A., Martens, K., Halse, S. et al. Cryptic species of the Eucypris virens species complex (Ostracoda, Crustacea) from Europe have invaded Western Australia. Biol Invasions 14, 2187–2201 (2012). https://doi.org/10.1007/s10530-012-0224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-012-0224-y

Keywords

Navigation