Skip to main content

Advertisement

Log in

Selection of an Effective Small Interference RNA to Silence Myostatin Gene Expression in Sheep Fibroblast Cells

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. The aim of this study was to identify an effective small interfering RNA (siRNA) to knockdown the myostatin gene in sheep fibroblast cells. Four siRNAs targeting sheep myostatin were synthesized and tested. Quantitative RT-PCR showed that siRNA1, siRNA2, siRNA3, and siRNA5 significantly reduced myostatin transcript levels by 72, 68, 56, and 76 % (P < 0.05), respectively. Western blot analysis showed that myostatin protein expression was significantly reduced by 76 % using siRNA1 and by 65 % using siRNA5 (P < 0.05). Therefore, siRNA1 and siRNA5 may have the potential to knockdown myostatin gene expression and increase sheep meat production, which should be a focus of future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38(7):813–818

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Furalyov VA, Kravchenko IV, Khotchenkov VP, Popov VO (2008) siRNAs targeting mouse myostatin. Biochemistry (Mosc) 73(3):342–345

    Article  CAS  Google Scholar 

  • Hammond SM, Caudy AA, Hannon GJ (2001) Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2(2):110–119

    Article  PubMed  CAS  Google Scholar 

  • Jain H, Singh S, Kadam M, Sarkhel BC (2009) Knockdown of the myostatin gene by RNA interference in caprine fibroblast cells. J Biotechnol 145(2):99–102

    Article  PubMed  Google Scholar 

  • Kambadur R, Sharma M, Smith TP, Bass JJ (1997) Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 7(9):910–916

    PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  • Magee TR, Artaza JN, Ferrini MG, Vernet D, Zuniga FI, Cantini L, Reisz-Porszasz S, Rajfer J, Gonzalez-Cadavid NF (2006) Myostatin short interfering hairpin RNA gene transfer increases skeletal muscle mass. J Gene Med 8(9):1171–1181

    Article  PubMed  CAS  Google Scholar 

  • McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162(6):1135–1147

    Article  PubMed  CAS  Google Scholar 

  • McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94(23):12457–12461

    Article  PubMed  CAS  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90

    Article  PubMed  CAS  Google Scholar 

  • Milazzotto MP, Goissis MD, Feitosa WB, Martins LF, Strauss BE, Bajgelman MC, Assumpcao ME, Visintin JA (2010) Myostatin gene knockdown through lentiviral-mediated delivery of shRNA for in vitro production of transgenic bovine embryos. Zygote 18(4):339–344

    Article  PubMed  CAS  Google Scholar 

  • Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA (2007) A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet 3(5):e79

    Article  PubMed  Google Scholar 

  • Sato F, Kurokawa M, Yamauchi N, Hattori MA (2006) Gene silencing of myostatin in differentiation of chicken embryonic myoblasts by small interfering RNA. Am J Physiol Cell Physiol 291(3):C538–C545

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer EJ (2005) Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol 6(2):127–138

    Article  PubMed  CAS  Google Scholar 

  • Stewart CK, Li J, Golovan SP (2008) Adverse effects induced by short hairpin RNA expression in porcine fetal fibroblasts. Biochem Biophys Res Commun 370(1):113–117

    Article  PubMed  CAS  Google Scholar 

  • Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275(51):40235–40243

    Article  PubMed  CAS  Google Scholar 

  • Welle S, Bhatt K, Pinkert CA, Tawil R, Thornton CA (2007) Muscle growth after postdevelopmental myostatin gene knockout. Am J Physiol Endocrinol Metab 292(4):E985–E991

    Article  PubMed  CAS  Google Scholar 

  • Williams MS (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 351(10):1030–1031

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Zhang J, Cong H, Huang Z, Sun L, Liu C, Tien P (2008) A retrovirus-based system to stably silence GDF-8 expression and enhance myogenic differentiation in human rhabdomyosarcoma cells. J Gene Med 10(8):825–833

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Genetically Modified Organisms Breeding Major Projects (No. 2009ZX08008-003B), National Modern Agricultural Industry Technology Fund for Scientists in Sheep Industry System, and the National Natural Science Foundation of China (No. 30972094). We especially thank Dr. Shangang Li for critical reading of this manuscript and Dr. Xihui Sheng for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bichun Li or Lixin Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Sun, D., Xu, L. et al. Selection of an Effective Small Interference RNA to Silence Myostatin Gene Expression in Sheep Fibroblast Cells. Biochem Genet 50, 838–847 (2012). https://doi.org/10.1007/s10528-012-9524-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-012-9524-2

Keywords

Navigation