Skip to main content
Log in

Categorical Ontology of Complex Spacetime Structures: The Emergence of Life and Human Consciousness

  • Original Paper
  • Published:
Axiomathes Aims and scope Submit manuscript

Abstract

A categorical ontology of space and time is presented for emergent biosystems, super-complex dynamics, evolution and human consciousness. Relational structures of organisms and the human mind are naturally represented in non-abelian categories and higher dimensional algebra. The ascent of man and other organisms through adaptation, evolution and social co-evolution is viewed in categorical terms as variable biogroupoid representations of evolving species. The unifying theme of local-to-global approaches to organismic development, evolution and human consciousness leads to novel patterns of relations that emerge in super- and ultra- complex systems in terms of colimits of biogroupoids, and more generally, as compositions of local procedures to be defined in terms of locally Lie groupoids. Solutions to such local-to-global problems in highly complex systems with ‘broken symmetry’ may be found with the help of generalized van Kampen theorems in algebraic topology such as the Higher Homotopy van Kampen theorem (HHvKT). Primordial organism structures are predicted from the simplest metabolic-repair systems extended to self-replication through autocatalytic reactions. The intrinsic dynamic ‘asymmetry’ of genetic networks in organismic development and evolution is investigated in terms of categories of many-valued, Łukasiewicz–Moisil logic algebras and then compared with those obtained for (non-commutative) quantum logics. The claim is defended in this essay that human consciousness is unique and should be viewed as an ultra-complex, global process of processes. The emergence of consciousness and its existence seem dependent upon an extremely complex structural and functional unit with an asymmetric network topology and connectivities—the human brain—that developed through societal co-evolution, elaborate language/symbolic communication and ‘virtual’, higher dimensional, non-commutative processes involving separate space and time perceptions. Philosophical theories of the mind are approached from the theory of levels and ultra-complexity viewpoints which throw new light on previous representational hypotheses and proposed semantic models in cognitive science. Anticipatory systems and complex causality at the top levels of reality are also discussed in the context of the ontological theory of levels with its complex/entangled/intertwined ramifications in psychology, sociology and ecology. The presence of strange attractors in modern society dynamics gives rise to very serious concerns for the future of mankind and the continued persistence of a multi-stable biosphere. A paradigm shift towards non-commutative, or non-Abelian, theories of highly complex dynamics is suggested to unfold now in physics, mathematics, life and cognitive sciences, thus leading to the realizations of higher dimensional algebras in neurosciences and psychology, as well as in human genomics, bioinformatics and interactomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Diagram 1

Similar content being viewed by others

References

  • Al-Agl FA, Brown R, Steiner R (2002) Multiple categories: the equivalence of a globular and cubical approach. Adv Math 170:711–118

    Google Scholar 

  • Albertazzi L (2005) Immanent realism – introduction to Franz Brentano. Springer, Dordrecht

    Google Scholar 

  • Alexander S (1927). Space, time and deity. Vols. I and II. Macmillan, London, pp. 3–431.

  • Alfsen EM, Schultz FW (2003) Geometry of state spaces of operator algebras. Birkäuser, Boston, Basel, Berlin

    Google Scholar 

  • Andersen PB, Emmeche C, Finnemann NO, Christiansen PV (2000) Downward causation. minds, bodies and matter. Aarhus University Press, Aarhus DK

    Google Scholar 

  • Aof ME-SA, Brown R (1992) The holonomy groupoid of a locally topological groupoid. Top Appl 47:97–113

    Google Scholar 

  • Arbib MA (2002) The mirror system, imitation and evolution of language. In: Nehaviv C, Dautenhahn K (eds) Imitation in animals and artefacts. MIT Press, Cambridge, MA, pp 229–280

    Google Scholar 

  • Ashby WR (1960) Design for a brain, 2nd edn. J Wiley and Sons, New York

    Google Scholar 

  • Atlan H (1972) L’Organisation biologique et la théorie de l’information. Hermann, Paris

    Google Scholar 

  • Atmanspacher H, Jahn RG (2003) Problems of reproducibility in complex mind matter systems. J Scientific Exploration 17(2):243–270

    Google Scholar 

  • Atyiah MF (1956) On the Krull-Schmidt theorem with applications to sheaves. Bull Soc Math France 84:307–317

    Google Scholar 

  • Austin JH (1998) Zen and the brain. MIT Press

  • Baars B (1988) A cognitive theory of consciousness. Cambridge University Press

  • Baars B, Franklin S (2003) How conscious experience and working memory interact. Trends Cogn Sci 7:166–172

    Google Scholar 

  • Baars B, Newman J (1994) A neurobiological interpretation of the global workspace theory of consciousness. In: Consciousness in philosophy and cognitive neuroscience. Erlbaum, Hildale NJ

  • Baez J (2001) Higher dimensional algebra and Planck scale physics. In: Callender C, Hugget N (eds) Physics meets philosophy at the Planck scale. Cambridge University Press, pp 177–195.

  • Baez J, Dolan J (1995) Higher dimensional algebra and topological quantum field theory. J Math Phys 36:6073–6105.

    Google Scholar 

  • Baianu IC, Marinescu M (1968) Organismic supercategories: towards a unitary theory of systems. Bull Math Biophys 30:148–159

    Google Scholar 

  • Baianu IC, Marinescu M (1969) Cell synchrony and cancer. Abstracts, 3rd International Biophysics Congress. MIT, USA.

  • Baianu IC (1970) Organismic supercategories: II. On multistable systems. Bull Math Biophys 32:539–561

    Google Scholar 

  • Baianu IC (1971a) Organismic Supercategories and Qualitative Dynamics of Systems. Bull Math Biophys 33(3):339–354

    Google Scholar 

  • Baianu IC (1971b) Categories, functors and quantum algebraic computations. In: Suppes P (ed) Proceedings of the fourth intl congress logic-mathematics-philosophy of science, September 1–4, 1971, Bucharest

  • Baianu IC (1972) Energetic considerations in EEG interpretation–neuron networks in categories. Ann Univ Bucuresti (Physics) 21:61–67.

    Google Scholar 

  • Baianu IC (1973) Some algebraic properties of (M,R)-systems. Bull Math Biophys 35:213–217

    Google Scholar 

  • Baianu IC, Marinescu M (1974). A functorial construction of (M,R)-systems. Rev Roum Math Pur et Appl 19:389–392.

    Google Scholar 

  • Baianu IC (1977) A logical model of genetic activities in Łukasiewicz algebras: the non-linear theory. Bull Math Biophys 39:249–258

    Google Scholar 

  • Baianu IC (1980a) Natural transformations of organismic structures. Bull Math Biophys 42:431–446

    Google Scholar 

  • Baianu IC (1980b) On partial order and structural disorder in biological systems. Letter to the editor. Bull Math Biophys 42:601–605

    Google Scholar 

  • Baianu IC (1983) Natural transformation models in molecular biology. In: Proceedings of the SIAM Natl Meet, Denver, CO.; Eprint: http://cogprints.org/3675/ http://cogprints.org/3675/0l/Naturaltransfmolbionu6.pdf

  • Baianu IC (1984) A molecular-set-variable model of structural and regulatory activities in metabolic and genetic networks. FASEB Proceedings 43:917

    Google Scholar 

  • Baianu IC (1987a) Computer models and automata theory in biology and medicine. In: Witten M (ed) Mathematical models in medicine (vol 7, pp 1513–1577). Pergamon Press, New York, CERN Preprint No. EXT-2004-072: http://doe.cern.ch//archive/electronic/other/ext/ext-2004-072.pdf

  • Baianu IC (1987b) Molecular models of genetic and organismic structures. In: Proceed. relational biology symp. Argentina; CERN Preprint No.EXT-2004-067 http://doc.cern.ch/archive/electronic/other/ext/ext2004067/MolecularModels-ICB3.doc

  • Baianu IC (2004a) Quantum nano-automata (QNA): microphysical measurements with microphysical QNA instruments. CERN Preprint EXT-2004-125

  • Baianu IC (2004b) Quantum interactomics and cancer mechanisms. Preprint No. 00001978 – http://bioline.utsc.utoronto.ca/archive/00001978/01/ Quantum Interactomics In: Cancer–Sept13k4E–cuteprt.pdf. http://bioline.utsc.utoronto.ca/archive/00001978/

  • Baianu IC (2006) Robert Rosen’s work and complex systems biology. Axiomathes 16(1–2):25–34

    Google Scholar 

  • Baianu IC (2007a) Translational genomics and human cancer interactomics. Translational Oncogenomics (invited Review, submitted in November 2006)

  • Baianu IC, Brown R, Glazebrook JF (2007b) A non-Abelian, categorical ontology of spacetimes and quantum gravity. Axiomathes 17: doi:10.1007/s10516-007-9012-1

  • Baianu IC, Poli R (2008) From simple to super- and ultra-complex systems: towards a non-abelian dynamics paradigm shift. In: Poli R et al (eds) Theory and applications of ontology. Springer, Berlin (in press)

  • Baianu IC, Scripcariu D (1973) On adjoint dynamical systems. Bull Math Biophys 35(4):475–486

    Google Scholar 

  • Baianu IC, Marinescu M (1974) A functorial construction of (M,R)-systems. Revue Roumaine de Mathematiques Pures et Appliquees 19:388–391

    Google Scholar 

  • Baianu IC, Glazebrook JF, Georgescu G (2004) Categories of quantum automata and N-valued Łukasiewicz algebras in relation to dynamic bionetworks, (M,R)-systems and their higher dimensional algebra. Abstract and Preprint of Report: http://www.ag.uiuc.edu/fs401/QAuto.pdf and http://www.medicalupapers.com/quantum+automata+math+categories+baianu/

  • Baianu IC, Brown R, Glazebrook JF (2006a) Quantum algebraic topology and field theories. http://www.ag.uiuc.edu/fs40l/QAT.pdf. (manuscript in preparation)

  • Baianu IC, Brown R, Georgescu G, Glazebrook JF (2006b) Complex nonlinear biodynamics in categories, higher dimensional algebra and Łukasiewicz – Moisil topos: transformations of neuronal, genetic and neoplastic networks. Axiomathes 16(1–2):65–122

    Google Scholar 

  • Baianu IC, Glazebrook JF, Georgescu G, Brown R (2007a) Non-abelian algebraic topology representations of quantum space–time in a generalized ‘topos’ with a quantum N-valued logic classifier (in submission)

  • Bak A, Brown R, Minian G, Porter T (2006) Global actions, groupoid atlases and related topics. J Homotopy Related Struct 1:1–54

    Google Scholar 

  • Bar-Yosef O, Vandermeersch B (1993) (April) Sci Am 94–100

  • Bartholomay AF (1960) Molecular set theory. A mathematical representation for chemical reaction mechanisms. Bull Math Biophys 22:285–307

    Google Scholar 

  • Bartholomay AF (1965) Molecular set theory. II. An aspect of biomathematical theory of sets. Bull Math Biophys 27:235–251

    Google Scholar 

  • Bartholomay A (1971) The wide-sense kinetics of molecular set transformations. Bull Math Biophys 33:355–367

    Google Scholar 

  • Bateson W (1894) Materials for the study of variation. Cambridge University Press, Cambridge, reprinted in 1992 by John Hopkins Univ Press

  • Beck F, Eccles JC (1992) Quantum aspects of brain activity and the role of consciousness. Proc Natl Acad Sci USA 89:11357–11361

    Google Scholar 

  • Bendall D (1982) Evolution from molecules to men. Cambridge, UK

    Google Scholar 

  • Bennett M, Hacker P (2003) Philosophical foundations of neuroscience. Blackwell Publishing, London

    Google Scholar 

  • Birkhoff G, von Neumann J (1936) The logic of quantum mechanics. Ann Math 37:823–843

    Google Scholar 

  • Blitz D (1992) Emergent evolution. Kluwer, Dordrecht

    Google Scholar 

  • Block N (ed) (1981) Readings in philosophy of psychology, vol 2. Harvard University Press, Cambridge, Mass

    Google Scholar 

  • Bogen JE (1995) On the neurophysiology of consciousness. Part 2: Constraining the semantic problem. Conscious Cogn 4:137–158

    Google Scholar 

  • Bohm D (1990) A new theory of the relationship of mind and matter. Philos Psychol 3:271–286

    Google Scholar 

  • Borceux F (1994) Handbook of categorical algebra 1 & 2. Encyclopedia of mathematics and its applications 50 & 51. Cambridge University Press

  • Bourbaki N (1961 and 1964) Algèbre commutative. In: Éléments de Mathématique, chapts 1–6. Hermann, Paris

  • Bourbaki N (1960) Elements de Mathmatique. Thorie des ensembles. Hermann, Paris

  • Bourbaki N (1991) General Topology. In: Elements of Mathematics, chapts 1–6, Springer, Berlin, Heidelberg, New York, London, Paris and Tokyo

  • Brown R (1967) Groupoids and Van Kampen’s theorem. Proc Lond Math Soc 17(3):385–401

    Google Scholar 

  • Brown R, Higgins P (1981) The algebra of cubes. J Pure Appl Algebra 21:233–260

    Google Scholar 

  • Brown R (1987) From groups to groupoids: a brief survey. Bull Lond Math Soc 19:113–134

    Google Scholar 

  • Brown R (1996) Homotopy theory, and change of base for groupoids and multiple groupoids. Appl Categor Struct 4:175–193

    Google Scholar 

  • Brown R (2004) Crossed complexes and homotopy groupoids as non commutative tools for higher dimensional local-to-global problems. In: Proceedings of the fields institute workshop on categorical structures for descent and Galois theory, Hopf algebras and semiabelian categories (September 23–28, 2002). Fields Institue Communications 43:101–130

  • Brown R (2006) Topology and groupoids. BookSurge LLC

  • Brown R, Spencer CB (1976) Double groupoids and crossed modules. Cah Top Géom Diff 17:343–362

    Google Scholar 

  • Brown R, Hardy JPL (1976) Topological groupoids I: universal constructions. Math Nachr 71:273–286

    Google Scholar 

  • Brown R, Mucuk O (1995) The monodromy groupoid of a Lie groupoid. Cah Top Géom Diff Cat 36:345–369

    Google Scholar 

  • Brown R, Mucuk O (1996) Foliations, locally Lie groupoids, and holonomy. Cah Top Géom Diff Cat 37:61–71

    Google Scholar 

  • Brown R, Janelidze G (1997) Van Kampen theorems for categories of covering morphisms in lextensive categories. J Pure Appl Algebra 119:255–263

    Google Scholar 

  • Brown R, Porter T (2003) Category theory and higher dimensional algebra: potential descriptive tools in neuroscience. In: Nandini Singh (ed) Proceedings of the international conference on theoretical neurobiology. February 2003, National Brain Research Centre, Delhi, Conference Proceedings 1:80–92

  • Brown R., İçen İ (2003) Towards a 2-dimensional notion of holonomy. Adv Math 178:141–175

    Google Scholar 

  • Brown R, Janelidze G (2004) Galois theory and a new homotopy double groupoid of a map of spaces. Appl Categor Struct 12:63–80

    Google Scholar 

  • Brown R, Porter T (2006) Category theory: an abstract setting for analogy and comparison. In: What is category theory? Advanced studies in mathematics and logic. Polimetrica Publisher, Italy, pp 257–274

  • Brown R, Danesh-Naruie G, Hardy JPL (1976) Topological groupoids II: covering morphisms and G-spaces. Math Nachr 74:143–156

    Google Scholar 

  • Brown R, Loday J-L (1987) Van Kampen theorems for diagrams of spaces. Topology 26:311–337.

    Google Scholar 

  • Brown R, Razak Salleh A (1999) Free crossed resolutions of groups of presentations of modules of identities amomg relations. LMS J Comp Math 2:28–61.

    Google Scholar 

  • Brown R, Hardie K, Kamps H, Porter T (2002) The homotopy double groupoid of a Hausdorff space. Theor Appl Categ 10:71–93

    Google Scholar 

  • Brown R, Paton R, Porter T (2004) Categorical language and hierarchical models for cell systems. In: Paton R, Bolouri H, Holcombe M, Parish JH, Tateson R (eds) Computation in cells and tissues – perspectives and tools of thought. Natural Computing Series, Springer Verlag, pp 289–303

  • Brown R, Glazebrook JF, Baianu IC (2007) A Conceptual construction of complexity levels theory in spacetime categorical ontology: non-abelian algebraic topology, many-valued logics and dynamic systems. Axiomathes 17 (the fourth paper in this issue)

  • Brown R, Higgins PJ, Sivera R (2007) Non-abelian algebraic topology, in preparation http://www.bangor.ac.uk/mas010/nonab-a-t.html; http://www.bangor.ac.uk/mas010/nonab-t/partI010604.pdf

  • Buchsbaum DA (1955) Exact categories and duality. Trans Am Math Soc 80:1–34

    Google Scholar 

  • Bucur I, Deleanu A (1968) Introduction to the theory of categories and functors. John Wiley and Sons, London, New York, Sydney

    Google Scholar 

  • Bunge M, Lack S (2003) Van Kampen theorems for toposes. Adv Math 179:291–317

    Google Scholar 

  • Butterfield J, Isham CJ (2001) Spacetime and the philosophical challenges of quantum gravity. In: Callender C, Hugget N (eds) Physics meets philosophy at the Planck scale. Cambridge University Press, pp 33–89

  • Butterfield J, Isham CJ (1998, 1999, 2000–2002) A topos perspective on the Kochen-Specker theorem I–IV. Int J Theor Phys 37(11):2669–2733; 38(3):827–859; 39(6):1413–1436; 41(4):613–639

    Google Scholar 

  • Cartan H, Eilenberg S (1956) Homological algebra. Princeton University Press, Princeton

    Google Scholar 

  • Carnap R (1938) The logical syntax of language. Harcourt, Brace and Co, New York

    Google Scholar 

  • Čech E (1932) Höherdimensionale homotopiegruppen. Verhandlungen des Internationalen Mathematiker-Kongresses Zurich. Band 2:203

  • Chalmers DJ (1996) The conscious mind – in search of a fundamental theory. Oxford University Press

  • Chang CC (1960/61) Maximal n-disjointed sets and the axiom of choice. Fund Math 49:11–14.

    Google Scholar 

  • Changeux J-P (1985) Neuronal man – the biology of mind. Princeton University Press

  • Chevalley C (1946) The Theory of Lie groups. Princeton Univ Press, Princeton, NJ

    Google Scholar 

  • Chodos A, Detweiler S (1980) Where has the fifth dimension gone? Phys Rev D 21:2167–2170

    Google Scholar 

  • Cohen PM (1965) Universal algebra. Harper and Row, New York and London

    Google Scholar 

  • Comoroshan S, Baianu IC (1969) Abstract representations of biological systems in organismic supercategories: II. Limits and colimits. Bull Math Biophys 31:84

    Google Scholar 

  • Connes A (1994) Noncommutative geometry. Academic Press

  • Cordier J-M, Porter T (1989) Shape theory, Ellis Horwood series: mathematics and its applications. Ellis Horwood, Chichester, UK

    Google Scholar 

  • Cramer JG (1980) The transactional interpretation of quantum mechanics. Phys Rev D 22:362

    Google Scholar 

  • Crick F, Koch C (1990) Toward a neurobiological theory of consciousness. The Neurosciences 2:263–275

    Google Scholar 

  • Croisot R, Lasier L (1963) Algèbre noethérienne non-commutative. Gauthiers-Villars, Paris

    Google Scholar 

  • Crowell RH (1959) On the van Kampen theorem. Pacific J Math 9:43–50

    Google Scholar 

  • Csikzentmihalyi M (1990) The evolving self: a psychology for the third millenium. Harper& Row, New York

    Google Scholar 

  • Diaconescu R (1976). Grothendieck toposes have Boolean points–a new proof. Comm Algebra 4(8):723–729.

    Google Scholar 

  • Dalla Chiara M, Giuntini R, Greechie R (2004) Reasoning in quantum theory, trends in logic–studia logica library, vol 22. Kluwer, Dordrecht, Boston, London

    Google Scholar 

  • Damasio A (1994) Descartes’ error: emotion, reason and the human brain. Avon Books, New York

    Google Scholar 

  • Dawkins R (1982) The extended phenotype. Oxford University Press, Oxford

    Google Scholar 

  • Dennett DC (1981) A cure for the common code? In: Block N (ed) Readings in philosophy of psychology, vol 2. Harvard University Press, Cambridge, Mass, pp 21–37

    Google Scholar 

  • Dickson SE (1965) Decomposition of modules. Math Z 99:9–13

    Google Scholar 

  • Dirac PAM (1962) The principles of quantum mechanics. Oxford University Press, Oxford

    Google Scholar 

  • de Jong H, Page M (2000) Qualitative simulation of large and complex genetic regulatory systems. In: Horn W (ed) Proceedings of fourteenth European conference on artifical intelligence, ECAI 2000. IOS Press, Amsterdam, pp 141–145

  • Dobzhansky T (1973) Genetic diversity and human equality. Basic Books, New York

    Google Scholar 

  • Douady A, Douady R (1979) Algebres et théories galoisiennnes, vol 2. CEDIC, Paris

    Google Scholar 

  • Duma A (1965) Sur les catégories des diagrammes. Rev Roum Math Pures et Appl 10:653–657

    Google Scholar 

  • Dyer E, Eilenberg S (1988) Globalizing fibrations by schedules. Fund Math 130:125–136

    Google Scholar 

  • Eccles JC (1986) Do mental events cause neural events analogously to the probability fields of quantum mechanics? Proc Royal Soc B277:411–428

    Google Scholar 

  • Edelman G (1989) The remembered present. Basic Books, New York

    Google Scholar 

  • Edelman G (1992) Brilliant air, brilliant fire – on the matter of the mind. Basic Books, New York

    Google Scholar 

  • Edelman G, Tononi G (2000) A universe of consiousness. Basic Books, New York

    Google Scholar 

  • Ehresmann C (1952) Structures locales et structures infinitésimales. CRAS Paris 274:587–589

  • Ehresmann C (1959) Catégories topologiques et catégories différentiables. Coll Géom Diff Glob Bruxelles, pp 137–150

  • Ehresmann C (1963) Catégories doubles des quintettes: applications covariantes. CRAS Paris 256:1891–1894

    Google Scholar 

  • Ehresmann C (1965) Catégories et structures. Dunod, Paris

    Google Scholar 

  • Ehresmann C (1966) Trends toward unity in mathematics. Cahiers de Topologie et Geometrie Differentielle 8:1–7

    Google Scholar 

  • Ehresmann C (1984) Oeuvres complètes et commentées: Amiens, 1980–84, edited and commented by Andrée Ehresmann

  • Ehresmann AC, Vanbremeersch J-P (1987) Hierarchical evolutive systems: a mathematical model for complex systems. Bull Math Biol 49(1):13–50

    Google Scholar 

  • Ehresmann AC, Vanbremeersch J-P (2006) The memory evolutive systems as a model of Rosen’s organisms. Axiomathes 16(1–2):13–50

    Google Scholar 

  • Eilenberg S, Mac Lane S (1942) Natural isomorphisms in group theory. Am Math Soc 43:757–831

    Google Scholar 

  • Eilenberg S, Mac Lane S (1945) The general theory of natural equivalences. Trans Am Math Soc 58:231–294

    Google Scholar 

  • Elsasser MW (1981) A form of logic suited for biology. In: Robert R (ed) Progress in theoretical biology, vol 6. Academic Press, New York and London, pp 23–62

    Google Scholar 

  • Falk D et al (2005) The brain of LB1, Homo floresiensis. Science 308:5719 – 242. DOI:10.1126/science.1109727

  • Field HH (1981) Mental representation. In: Block N (ed) Readings in philosophy of psychology, vol 2. Harvard University Press, Cambridge, Mass, pp 64–77

    Google Scholar 

  • Fleischaker G (1988) Autopoiesis: the status of its system logic. Biosystems 22(1):3749

    Google Scholar 

  • Fodor JA (1981) Propositional attitudes. In: Block N (ed) Readings in philosophy of psychology, vol 2. Harvard Univ Press, Cambridge, Mass, pp 45–63

    Google Scholar 

  • Freeman WJ (1997) Nonlinear neurodynamics of intentionality. J Mind Behav 18:143–172

    Google Scholar 

  • Freeman WJ (1999) Consciousnness, intentionality and causality. J Conscious Stud 11:143–172

    Google Scholar 

  • Freyd P (1964) Abelian categories. Harper and Row, New York and London

    Google Scholar 

  • Gablot R (1971) Sur deux classes de catégories de Grothendieck. Thesis. University de Lille

  • Gabor D (1946) Theory of communication. J IEE (London) 93(III):429–457

    Google Scholar 

  • Gabriel P (1962) Des catégories abéliennes. Bull Soc Math France 90:323–448

    Google Scholar 

  • Gabriel P, Popescu N (1964) Caractérisation des catégories abéliennes avec générateurs et limites inductives. CRAS Paris 258:4188–4191

    Google Scholar 

  • Gabriel P, Zisman M (1967) Category of fractions and homotopy theory, Ergebnesse der math. Springer, Berlin

    Google Scholar 

  • Georgescu G (2006) N-valued logics and Łukasiewicz–Moisil algebras. Axiomathes 16 (1–2):123–136

    Google Scholar 

  • Georgescu G, Popescu D (1968) On algebraic categories. Revue Roumaine de Mathematiques Pures et Appliquées 13:337–342

    Google Scholar 

  • Georgescu G, Vraciu C (1970). On the characterization of Łukasiewicz-Moisil algebras. J Algebra 16(4):486–495

    Google Scholar 

  • Gnoli C, Poli R (2004) Levels of reality and levels of representation. Knowl Organ 21(3):151–160

    Google Scholar 

  • Godement R (1958) Théorie des faisceaux. Hermann, Paris

    Google Scholar 

  • Goldie AW (1967) Localization in non-commutative noetherian rings. J Algebra 5:89–105

    Google Scholar 

  • Goldblatt R (1979) Topoi. The categorial analysis of logic. North-Holland Publ Comp, Amsterdam

    Google Scholar 

  • Golubitsky M, Stewart I (2006) Nonlinear dynamics of networks: the groupoid formalism. Bull Am Math Soc 43(3):305–364

    Google Scholar 

  • Goodwin BC (1982) Development and evolution. J Theor Biol 97:43–55

    Google Scholar 

  • Goodwin BC (1994) How the leopard changed its spots: the evolution of complexity. Touchstone Publ, New York

    Google Scholar 

  • Grothendieck A (2007) Pursuing stacks. In: Maltsiniotis G (ed) Documents Mathe´matiques, Socie´te´ Mathe´matique de France (to appear).

  • Goubault E (2003) Some geometric perspectives in concurrency theory. Homol Homotopy Appl 5(2):95–136

    Google Scholar 

  • Gould SJ (1977a) Ever since Darwin. New York and Hammondsworth

  • Gould SJ (1977b) Ontogeny and phylogeny. Belknap Press, Cambridge, Mass

    Google Scholar 

  • Gravina B et al (2005) Nature 438:51–56

  • Gray CW (1965) Sheaves with values in a category. Topology 3:1–18

    Google Scholar 

  • Gregory RL (ed)-assist, Zangwill OL (1987) The Oxford companion to the mind. Oxford University Press, Oxford and New York

  • Grossberg S (1999) The link between brain learning, attention and consciousness. Conscious Cogn 8:1–44

    Google Scholar 

  • Grothendieck A (1957) Sur quelque point d-algébre homologique. Tohoku Math J 9:119–121

    Google Scholar 

  • Grothendieck A (1971) Revêtements étales et Groupe Fondamental (SGA1), chap VI: Catégories fibrées et descente. Lecture Notes in Math 224, Springer-Verlag, Berlin

  • Grothendieck A, Dieudonné J (1960) Eléments de geometrie algébrique. Publ Inst des Hautes Etudes de Science 4

  • Harman GH (1981) Language learning. In: Block N (ed) Readings in philosophy of psychology, vol 2. Harvard Univ Press, Cambridge, Mass, pp 38–44

    Google Scholar 

  • Hartmann N (1935) Zur Grundlegung der Ontologie. W de Gruyter, Berlin

    Google Scholar 

  • Hartmann N (1952) The new ways of ontology. Chicago

  • Hawking SW, Ellis GFR (1973) The large scale structure of space–time. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Healy MJ, Caudell TP (2004) Neural networks, knowledge and cognition: a mathematical semantic model based upon category theory. Techninal report EECE-TR-04-20, Dept. of Electrical and Computer Engineering, University of New Mexico

  • Healy MJ, Caudell TP (2006) Ontologies and worlds in category theory: implications for neural systems. Axiomathes 16(1–2):165–214

    Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Heller A (1958) Homological algebra in Abelian categories. Ann Math 68:484–525

    Google Scholar 

  • Heller A, Rowe KA (1962) On the category of sheaves. Am J Math 84:205–216

    Google Scholar 

  • Higgins PJ (1964) Presentations of groupoids, with applications to groups. Proc Cambridge Philos Soc 60:7–20

    Google Scholar 

  • Higgins PJ (2005) Categories and groupoids. Van Nostrand Mathematical Studies: 32 (1971); Reprints in Theory and Applications of Categories 7:1–195

  • Higgins PJ, Mackenzie KCH (1990) Fibrations and quotients of differentiable groupoids. J London Math Soc 42(1):101–110

    Google Scholar 

  • Hiley B, Pylkkänen P (2005) Can mind affect matter via active information? Mind Matter 3(2):7–27

    Google Scholar 

  • Hills D (1981) Mental representations and languages of thought. In: Block N (ed) Readings in philosophy of psychology, vol 2. Harvard University Press, Cambridge, Mass, pp 11–20

    Google Scholar 

  • Hofstadter DR (1979) Gödel, Escher, Bach: an eternal Golden Braid. Basic Books, New York

    Google Scholar 

  • Huber PI (1962) Standard constructions in Abelian categories. Can J Math Math Ann 145:321–325

    Google Scholar 

  • Hurewicz E (1955) On the concept of fiber spaces. Proc Natl Acad Sci USA 41:956–961

    Google Scholar 

  • James W (1890) The principles of psychology. Henry Hold and Co., New York

    Google Scholar 

  • James W (1958) Talks to teachers on psychology. Norton, New York

    Google Scholar 

  • Jerne NK (1974) Towards a network theory of the immune system. Ann Imunol (Inst Pasteur) 125C:373–389

    Google Scholar 

  • van Kampen EH (1933) On the connection between the fundamental groups of some related spaces. Am J Math 55:261–267

    Google Scholar 

  • Kan DM (1958) Adjoint functors. Trans Amer Math Soc 294:294–329.

    Google Scholar 

  • Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626[1]

    Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kleisli H (1962) Homotopy theory in Abelian categories. Can J Math 14:139–169

    Google Scholar 

  • Knight JT (1970) On epimorphisms of non-commutative rings. Proc Cambridge Phil Soc 68:589–601

    Google Scholar 

  • Kosslyn SM (2007) On the evolution of human motivation: the role of social prosthetic systems. In: Platek et al (eds) Evolutionary cognitive neuroscience. MIT Press, Cambridge, MA

  • Kozma R, Puljic M, Balister P, Bollobas B, Freeman WJ (2004) Neuropercolation a random cellular automata approach to spatio–temporal neurodynamics. Lect Notes Comput Sci 3305:435–443

    Google Scholar 

  • Krips H (1999) Measurement in quantum theory. In: Zalta EN (ed) The Stanford Encyclopedia of Philosophy (Winter 1999 Edition)

  • Landsman NP (1998) Mathematical topics between classical and quantum mechanics. Springer Verlag, New York

    Google Scholar 

  • Lawvere FW (1963) Functorial semantics of algebraic theories. Proc Natl Acad Sci USA Mathematics 50:869–872

    Google Scholar 

  • Lawvere FW (1966) The category of categories as a foundation for mathematics. In: Eilenberg S et al (eds) Proc Conf Categorical Algebra- La Jolla. Springer-Verlag, Berlin, Heidelberg and New York, pp 1–20

  • Lawvere FW (1969) Closed cartesian categories. Lecture held as a guest of the Romanian Academy of Sciences, Bucharest

  • Levich AP, Solovy’ov AV (1999) Category-functor modelling of natural systems. Cybernet Syst 30(6):571–585

    Google Scholar 

  • Li M, Vitanyi P (1997) An introduction to Kolmogorov complexity and its applications. Springer Verlag, New York

    Google Scholar 

  • Löfgren L (1968) An axiomatic explanation of complete self-reproduction. Bull Math Biophys 30:317–348

    Google Scholar 

  • Lubkin S (1960) Imbedding of abelian categories. Trans Am Math Soc 97:410–417

    Google Scholar 

  • Luisi PL, Varela FJ (1988) Self-replicating micelles a chemical version of a minimal autopoietic system. Origin Life Evol Biospheres 19(6):633–643

    Google Scholar 

  • Luhmann N (1995) Social Systems. Stanford University Press, Stanford

    Google Scholar 

  • Mac Lane S (1963) Homology. Springer, Berlin

    Google Scholar 

  • Mac Lane S (2000) Categories for the working mathematician. Springer, New York, Berlin, Heidelberg

    Google Scholar 

  • Mac Lane S, Moerdijk I (1992) Sheaves in geometry and logic. A first introduction in topos theory. Springer-Verlag, New York

    Google Scholar 

  • Majid S (1995) Foundations of quantum group theory. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Majid S (2002) A quantum groups primer. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Mallios A, Raptis I (2003) Finitary, causal and quantal vacuum Einstein gravity. Int J Theor Phys 42:1479

    Google Scholar 

  • Manders KL (1982) On the space-time ontology of physical theories. Philos Sci 49(4):575–590

    Google Scholar 

  • Martins JF, Porter T (2004) On Yetter’s invariant and an extension of the Dijkgraaf-witten invariant to categorical groups. math.QA/0608484

  • Maturana HR, Varela FJ (1980) Autopoiesis and Cognition – the realization of the living. Boston Studies in the Philosophy of Science, vol 42. Reidel Pub Co., Dordrecht

  • May JP (1999) A concise course in algebraic topology. The University of Chicago Press, Chicago

    Google Scholar 

  • Mayr E (1970) Populations, species, and evolution. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Mayr E, Provine WB (eds) (1986) The evolutionary synthesis: perspectives on the unification of biology. Cambridge, MA

  • McCrone J (1991) The ape that spoke. MacMillan, New York

    Google Scholar 

  • McCulloch W, Pitts W (1943) A logical calculus of ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Google Scholar 

  • McGinn C (1995) Consciousness and space. In: Metzinger T (ed) Conscious experience. Imprint Academic, Thorverton

    Google Scholar 

  • McKenna MC, Bell SK (1997) Classification of mammals above the species level. Columbia University Press, New York

    Google Scholar 

  • Mead GH (1990) The mechanisms of social consciousness. In: Pickering J, Skinner M (eds) From sentience to symbols, chap 7. University of Toronto Press, Toronto and Buffalo, pp 190–216

  • Misra B, Prigogine I, Courbage M (1979) Lyaponouv variables: entropy and measurement in quantum mechanics. Proc Natl Acad Sci USA 78(10):4768–4772

    Google Scholar 

  • Mitchell B (1964) The full imbedding theorem. Am J Math 86:619–637

    Google Scholar 

  • Mitchell B (1965) Theory of categories. Academic Press, London

    Google Scholar 

  • Mumford L (1979) The myth of the machine—technics and human evelopment. Harcourt, Brace & World, New York, pp 3–342.

    Google Scholar 

  • Nagy E, Molnar P (2004) Homo imitans or homo provocans? The phenomenon of neonatal initiation. Infant Behav Dev 27:57–63

    Google Scholar 

  • Oberst U (1969) Duality theory for Grothendieck categories. Bull Am Math Soc 75:1401–1408

    Google Scholar 

  • Ooort F (1970) On the definition of an abelian category. Proc Roy Neth Acad Sci 70:13-02

    Google Scholar 

  • Ore O (1931) Linear equations in non-commutative fields. Ann Math 32:463–477

    Google Scholar 

  • Penrose R (1994) Shadows of the mind. Oxford University Press, Oxford

    Google Scholar 

  • Penrose R, Sir (2007) The road to reality—a complete guide to the laws of the universe. Vintage Books, New York, pp 7–1099.

  • Pfeiffer E (1969) The emergence of man. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Pickering J, Skinner M (1990) From sentience to symbols. University of Toronto Press, Toronto

    Google Scholar 

  • Plymen RJ, Robinson PL (1994) Spinors in Hilbert Space. Cambridge Tracts in Math. 114, Cambridge Univ. Press, Cambridge

  • Poli R (1998) Levels. Axiomathes 9(1–2):197–211

    Google Scholar 

  • Poli R (2001a) The basic problem of the theory of levels of reality. Axiomathes 12(3–4):261–283

    Google Scholar 

  • Poli R (2001b) Alwis ontology for knowledge engineers. PhD Thesis, Utrecht University

  • Poli R (2006a) Levels of reality and the psychological stratum. Revue Internationale de Philosophie 61:2, 163–180

    Google Scholar 

  • Poli R (2006b) Steps towards a synthetic methodology. In: Proceediongs of the conference continuity and change: perspectives on science and religion. Metanexus Institute, June 2006, Philadelphia, PA. http://www.metanexus.net/conferences/pdf/conference2006/Poli.pdf

  • Poli R (2006c) First steps in experimental phenomenology. In: Loula A, Gudwin R (eds) Artificial cognition systems

  • Poli R (2008) Ontology: the categorical stance. In: Poli R et al (eds) Theory and applications of ontology. Springer, Berlin (in press)

  • Pollard JW (ed) (1984) Evolutionary theory: paths into the future. Chichester

  • Popescu N (1973) Abelian categories with applications to rings and modules. Academic Press, New York and London. 2nd edn 1975 (English translation by I.C. Baianu)

  • Popescu N (1966, 1967) Elements of sheaf theory. St Cerc Mat V/VI, 18–19:205–240; 945–991

  • Popescu N (1967) La théorie générale de la décomposition. Rev Roum Math Pures et Appl 7:1365–1371

    Google Scholar 

  • Porter T (2002) Geometric aspects of multiagent sytems. preprint University of Wales-Bangor

  • Pradines J (1966) Théorie de Lie pour les groupoides différentiable, relation entre propriétes locales et globales. CR Acad Sci Paris Sér A 268:907–910

    Google Scholar 

  • Pribram KH (1991) Brain and perception: holonomy and structure in figural processing. Lawrence Erlbaum Assoc., Hillsdale

    Google Scholar 

  • Pribram KH (2000) Proposal for a quantum physical basis for selective learning. In: Farre (ed) Proceedings ECHO IV 1–4

  • Prigogine I (1980) From being to becoming – time and complexity in the physical sciences. W. H. Freeman and Co, San Francisco

  • Raptis I (2003) Algebraic quantisation of causal sets. Int J Theor Phys 39:1233

    Google Scholar 

  • Raptis I, Zapatrin RR (2000) Quantisation of discretized spacetimes and the correspondence principle. Int J Theor Phys 39:1

    Google Scholar 

  • Rashevsky N (1954) Topology and life: in search of general mathematical principles in biology and sociology. Bull Math Biophys 16:317–348

    Google Scholar 

  • Rashevsky N (1965) The representation of organisms in terms of predicates. Bull Math Biophys 27:477–491

    Google Scholar 

  • Rashevsky N (1967) Organisms sets and biological epimorphism. Bull Math Biophys 29:389–393

    Google Scholar 

  • Rashevsky N (1968) Neurocybernetics as a particular case of general regulatory mechanisms in biological and social organisms. Concepts de l’Age de la Science 3:243–248

    Google Scholar 

  • Rashevsky N (1969) Outline of a unified approach to physics, biology and sociology. Bull Math Biophys 31:159–198

    Google Scholar 

  • Riley JA (1962) Axiomatic primary and tertiary decomposition theory. Trans Am Math Soc 105:177–201

    Google Scholar 

  • Roos JE (1964) Sur la condition Ab6 et ses variantes dans les catégories abéliennes. CRAS Paris 258.

  • Roos (1967) Sur la condition Ab6 et ses variantes dans les cate’gories abe’liennes, CRAS, Serie A, Paris 264:991–994.

  • Roux A (1964) Sur une équivalence de catégories abéliennes. CRAS Paris 258:5566–5569

    Google Scholar 

  • Roberts JE (2004) More lectures on algebraic quantum field theory. In: Connes A et al (eds) Noncommutative geometry. Springer, Berlin, New York

    Google Scholar 

  • Rosen R (1958a) A relational theory of biological systems. Bull Math Biophys 20:245–260

    Google Scholar 

  • Rosen R (1958b) The representation of biological systems from the standpoint of the theory of categories. Bull Math Biophys 20:317–341

    Google Scholar 

  • Rosen R (1971) Dynamic realizations of (M,R)—systems. Bull Math Biophys 34:1–15.

    Google Scholar 

  • Rosen (1971a) Dynamic realizations of (M,R)—systems. Bull Math Biophys 33:1–23.

    Google Scholar 

  • Rosen R (1971b) Dynamic realizations of (M,R)—systems. Bull Math Biophys 33:230–245.

    Google Scholar 

  • Rosen R (1977) Observation and biological systems. Bull Math Biol 39:663–678.

    Google Scholar 

  • Rosen R (1985) Anticipatory systems. Pergamon Press, New York

    Google Scholar 

  • Rosen R (1987) On complex systems. Eur J Operation Res 30:129–134

    Google Scholar 

  • Rovelli C (1998) Loop quantum gravity. In: Dadhich N et al (eds) Living reviews in relativity (refereed electronic journal) http://www.livingreviews.org/Articles/Volume1/1998~1 rovelli

  • Rosen R (1999) Essays on life itself, Columbia University Press, New York.

    Google Scholar 

  • Russell B, Whitehead AN (1925) Principia mathematica. Cambridge University Press, Cambridge

    Google Scholar 

  • Ryle G (1949) The concept of mind. Hutchinson, London

    Google Scholar 

  • Samuel P, Zariski O (1957, 1960) Commutative algebra, vols 1 and 2. van Nostrand, New York

  • Schrödinger E (1945) What is life? Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Schrödinger E (1967) Mind and matter in ‘what is life?’ Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Stenström B (1968) Direct sum decompositions in Grothendieck categories. Arkiv Math 7:427–432.

    Google Scholar 

  • Searle JR (1983) Intentionality. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Serre D et al (2004) No evidence of Neanderthal mtDNA contribution to early modern humans. PLoS Biol 2(3):3137. PMID 15024415

    Google Scholar 

  • Silver L (1967) Non-commutative localization and applications. J Algebra 7:44–76

    Google Scholar 

  • Sober E (ed) (1984) Conceptual issues in evolutionary biology and anthology. Cambridge, Massachusetts

    Google Scholar 

  • Sorkin RD (1991) Finitary substitute for continuous topology. Int J Theor Phys 30(7):923–947

    Google Scholar 

  • Smolin L (2001) Three roads to quantum gravity. Basic Books, New York

    Google Scholar 

  • Spanier EH (1966) Algebraic topology. McGraw Hill, New York

    Google Scholar 

  • Sperry RW (1992) Turnabout on consciousness: a mentalist view. J Mind Behav 13:259–280

    Google Scholar 

  • Stapp H (1993) Mind, matter and quantum mechanics. Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  • Stewart I, Golubitsky M (1993) Fearful symmetry: is god a geometer? Blackwell, Oxford, UK

    Google Scholar 

  • Stenström B (1968) Direct sum decomposition in Grothendieck categories. Arkiv Math 7:427–432

    Google Scholar 

  • Szabo RJ (2003) Quantum field theory on non-commutative spaces. Phys Rep 378:207–209

    Google Scholar 

  • Takahashi H (1963) Adjoint pair of functors on abelian categories. J Fac Soc University Tokyo 13:175–181

    Google Scholar 

  • Tattersall I, Schwartz J (2000) Extinct humans. Westview Press, Boulder, Colorado Oxford. ISBN 0-8133-3482-9 (hc)

  • Thom R (1980) Modèles mathématiques de la morphogénèse, Paris, Bourgeois

  • Thompson W D’Arcy (1994) On growth and form. Dover Publications Inc., New York

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Phil Trans Royal Soc (B) 257:37–72

    Google Scholar 

  • Unruh WG (2001) Black holes, dumb holes, and entropy. In: Callender C, Hugget N (eds) Physics meets philosophy at the planck scale. Cambridge University Press, pp 152–173

  • Varela FJ (1979) Principles of biological autonomy. Elsevier/North-Holland, New York

  • Várilly JC (1997) An introduction to noncommutative geometry arXiv:physics/9709045

  • Velmans M (2000) Understanding consciousness. London, Routledge

    Google Scholar 

  • von Neumann J (1932) Mathematische Grundlagen der Quantenmechanik. Springer, Berlin

    Google Scholar 

  • Wallace R (2005) Consciousness: a mathematical treatment of the global neuronal workspace. Springer, Berlin

    Google Scholar 

  • Wallace R (2007) Culture and inattentional blindness: a global workspace perspective. J Theor Biol 245:378–390

    Google Scholar 

  • Warner M (1982) Representations of (M,R)-systems by categories of automata. Bull Math Biol 44:661–668

    Google Scholar 

  • Weinstein A (1996) Groupoids: unifying internal and external symmetry. Notices Am Math Soc 43:744–752

    Google Scholar 

  • Wess J, Bagger J (1983) Supersymmetry and supergravity. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Weinberg S (1995, 2000) The quantum theory of fields I & II. Cambridge University Press; vol. III published in 2000

  • Wheeler J, Zurek W (1983) Quantum theory and measurement. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Whitehead JHC (1941) On adding relations to homotopy groups. Ann Math 42(2):409–428

    Google Scholar 

  • Wiener N (1950) The human use of human beings: cybernetics and society. Free Association Books, London, 1989 edn

  • Wilson DL (1999) Mind-brain interaction and violation of physical laws. J Conscious Stud 6(8–9):185–200

    Google Scholar 

  • Winograd T (1972) Understanding natural language. Academic Press, New York

    Google Scholar 

  • Woit P (2006) Not even wrong: the failure of string theory and the search for unity in physical laws. Jonathan Cape

  • Wütrich K (1986) NMR of proteins and nucleic acids. John Wiley Sons, New York, Chichester, Brisbane, Toronto, Singapore

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. C. Baianu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baianu, I.C., Brown, R. & Glazebrook, J.F. Categorical Ontology of Complex Spacetime Structures: The Emergence of Life and Human Consciousness. Axiomathes 17, 223–352 (2007). https://doi.org/10.1007/s10516-007-9011-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10516-007-9011-2

Keywords

Navigation