Skip to main content
Log in

Metals in the Aquatic Environment—Interactions and Implications for the Speciation and Bioavailability: A Critical Overview

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

In most case scenarios, individual metals exist as components in mixtures with organic and inorganic substances and/or particulate matter. While the concepts encompassing mixture toxicity and modeling have been around for decades, only recently have new approaches (dynamic speciation techniques and fate and bioavailability models) been expanded to consider metal mixture scenarios. For example, the kinetic features of humic substances and inorganic colloids on the complexation of metals are generally considered. Although current environmental regulations rarely require an assessment of chemicals mixtures, research on these mixtures in the environment is essential for future regulatory demands and is vital for ensuring adequate environmental protection. Interpretation of speciation and bioavailability data from metal mixtures can be very complex and demanding, due to the existence of kinetic physicochemical transformations of the dynamic components. This kinetic effect largely affects metals’ dynamic speciation, culminating in different transformed metal-containing products with different contributions for the metal uptake by a consuming interface. This manuscript is focused on the environmental fate of metal mixtures, which determines how the mixture is biogeochemically processed and which receptors are most exposed (organisms and exposure route), with a special focus on their dynamic speciation, including a critical evaluation of the current challenges and available dynamic speciation techniques as well as computer codes and models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed IAM, Hamilton-Taylor J, Lofts S, Meeussen JCL, Lin C, Zhang H, Davison W (2013) Testing copper-speciation predictions in freshwaters over a wide range of metal–organic matter ratios. Environ Sci Technol 47:1487–1495. doi:10.1021/es304150n

    Google Scholar 

  • Alemani D, Buffle J, Zhang Z, Galceran J, Chopard B (2008a) Metal flux and dynamic speciation at (bio)interfaces. Part III: MHEDYN, a general code for metal flux computation; application to simple and fulvic complexants. Environ Sci Technol 42:2021–2027. doi:10.1021/es071319n

    Google Scholar 

  • Alemani D, Buffle J, Zhang Z, Galceran J, Chopard B (2008b) Metal flux and dynamic speciation at (bio)interfaces. Part IV: MHEDYN, a general code for metal flux computation; application to particulate complex ants and their mixtures with the other natural ligands. Environ Sci Technol 42:2028–2033. doi:10.1021/es702989v

    Google Scholar 

  • Allard T, Menguy N, Salomon J, Calligaro T, Weber T, Calas G, Benedetti MF (2004) Revealing forms of iron in river-borne material from major tropical rivers of the Amazon Basin (Brazil). Geochim Cosmochim Acta 68:3079–3094. doi:10.1016/j.gca.2004.01.014

    Google Scholar 

  • Allègre C (2005) Géologie isotopique. Belin, Paris

    Google Scholar 

  • Apte SC, Gardner MJ, Ravenscroft JE (1988) An evaluation of voltammetric titration procedures for the determination of trace metal complexation in natural waters by use of computers simulation. Anal Chim Acta 212:1–21. doi:10.1016/S0003-2670(00)84124-0

    Google Scholar 

  • Baalousha M, Nur Y, Römer I, Tejamaya M, Lead JR (2013) Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci Total Environ 454–455:119–131. doi:10.1016/j.scitotenv.2013.02.093

    Google Scholar 

  • Batley GE (1989) Trace elements speciation: analytical methods and problems. CRC Press, Boca Raton

    Google Scholar 

  • Batley GE, Apte SC, Stauber JL (2004) Speciation and bioavailability of trace metals in water: progress since 1982. Aust J Chem 57:903–919. doi:10.1071/CH04095

    Google Scholar 

  • Belmont-Hébert C, Tercier ML, Buffle J, Fiaccabrino GC, Rooij NFd, Koudelka-Hep M (1998) Gel-integrated microelectrode arrays for direct voltammetric measurements of heavy metals in natural waters and other complex media. Anal Chem 70:2949–2956. doi:10.1021/ac971194c

    Google Scholar 

  • Benedetti MF (2006) Metal ion binding to colloids from database to field systems. J Geochem Explor 88:81–85. doi:10.1016/j.gexplo.2005.08.018

    Google Scholar 

  • Benedetti MF, Milne CJ, Kinniburgh DG, Riemsdijk WHv, Koopal LK (1995) Metal ion binding to humic susbtances: application of the non-ideal competitive adsorption model. Environ Sci Technol 29:446–457

    Google Scholar 

  • Berg CMGvd, Donat JR (1992) Determination and data evaluation of copper complexation by organic ligands in sea water using cathodic stripping voltammetry at varying detection windows. Anal Chim Acta 257:281–291. doi:10.1016/0003-2670(92)85181-5

    Google Scholar 

  • Berg CMGVD, Nimmo M, Daly P, Turner DR (1990) Effects of the detection window on the determination of organic copper speciation in estuarine waters. Anal Chim Acta 232:149–159. doi:10.1016/S0003-2670(00)81231-3

    Google Scholar 

  • Bryan SE, Tipping E, Hamilton-Taylor J (2002) Comparison of measured and modelled copper binding by natural organic matter in freshwaters. Comp Biochem Physiol C Toxicol Pharmacol 133:37–49. doi:10.1016/S1532-0456(02)00083-2

    Google Scholar 

  • Buffle J, Wilkinson KJ, Stoll S, Filella M, Zhang J (1998) A generalized description of aquatic colloidal interactions: the three colloidal component approach. Environ Sci Technol 32:2887–2899

    Google Scholar 

  • Buffle J, Zhang Z, Startchev K (2007) Metal flux and dynamic speciation at (bio)interfaces. Part I: critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances. Environ Sci Technol 41:7609–7620. doi:10.1021/es070702p

    Google Scholar 

  • Buss HL, Lüttge A, Brantley SL (2007) Etch pit formation on iron silicate surfaces during siderophore-promoted dissolution. Chem Geol 240:326–342. doi:10.1016/j.chemgeo.2007.03.003

    Google Scholar 

  • Cantwell FF, Nielsen JS, Hrudey SE (1982) Free nickel ion concentration in sewage by an ion exchange column-equilibration method. Anal Chem 54:1498–1503. doi:10.1021/ac00246a012

    Google Scholar 

  • Cornelis G, Pang L, Doolette C, Kirby JK, McLaughlin MJ (2013) Transport of silver nanoparticles in saturated columns of natural soils. Sci Total Environ 463–464:120–130. doi:10.1016/j.scitotenv.2013.05.089

    Google Scholar 

  • Degryse F, Smolders E, Merckx R (2005) Labile Cd complexes increase Cd availability to plants. Environ Sci Technol 40:830–836. doi:10.1021/es050894t

    Google Scholar 

  • Degryse F, Smolders E, Parker DR (2009) Partitioning of metals (Cd Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications: a review. Eur J Soil Sci 60:590–612. doi:10.1111/j.1365-2389.2009.01142.x

    Google Scholar 

  • Domingos RF, Pinheiro JP (2014) Implications of the use of nanomaterials for environmental protection: challenges in designing environmentally relevant toxicological experiments. In: Kharisov BI, Kharissova OV, Dias HVR (eds) Nanomaterials for environmental protection. Wiley, Inc., Hoboken

    Google Scholar 

  • Domingos RF, Benedetti MF, Pinheiro JP (2007) Application of permeation liquid membrane and scanned stripping chronopotentiometry to metal speciation analysis of colloidal complexes. Anal Chim Acta 589:261–268. doi:10.1016/j.aca.2007.02.056

    Google Scholar 

  • Domingos RF, Huidobro C, Companys E, Galceran J, Puy J, Pinheiro JP (2008a) Comparison of AGNES (absence of gradients and Nernstian equilibrium stripping) and SSCP (scanned stripping chronopotentiometry) for trace metal speciation analysis. J Electroanal Chem 617:141–148. doi:10.1016/j.jelechem.2008.02.002

    Google Scholar 

  • Domingos RF, Lopez R, Pinheiro JP (2008b) Trace metal dynamic speciation studied by scanned stripping chronopotentiometry (SSCP). Environ Chem 5:24–32. doi:10.1071/EN07088

    Google Scholar 

  • Domingos RF, Tufenkji N, Wilkinson KJ (2009) Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43:1282–1286. doi:10.1021/es8023594

    Google Scholar 

  • Domingos RF, Franco C, Pinheiro JP (2014) The role of charged polymer coatings of nanoparticles on the speciation and fate of metal ions in the environment. Environ Sci Pollut Res. doi:10.1007/s11356-014-3546-8

  • Dudal Y, Gérard F (2004) Accounting for natural organic matter in aqueous chemical equilibrium models: a review of the theories and applications. Earth-Sci Rev 66:199–216. doi:10.1016/j.earscrev.2004.01.002

    Google Scholar 

  • Duval JFL (2009) Metal speciation dynamics in soft colloidal ligand suspensions. Electrostatic and site distribution aspects. J Phys Chem A 113:2275–2293. doi:10.1021/jp809764h

    Google Scholar 

  • Duval JFL (2013) Dynamics of metal uptake by charged biointerphases: bioavailability and bulk depletion. Phys Chem Chem Phys 15:7873–7888. doi:10.1039/C3CP00002H

    Google Scholar 

  • Filella M (2008) NOM site binding heterogeneity in natural waters: discrete approaches. J Mol Liq 143:42–51. doi:10.1016/j.molliq.2008.04.018

    Google Scholar 

  • Fogg AG (1994) Adsorptive stripping voltammetry or cathodic stripping voltammetry? Methods of accumulation and determination in stripping voltammetry. Anal Proc 31:313–317. doi:10.1039/AI9943100313

    Google Scholar 

  • Fortin C, Campbell PGC (1998) An ion-exchange technique for free-metal ion measurements (Cd2+, Zn2+): applications to complex aqueous media. Int J Environ Anal Chem 72:173–194. doi:10.1080/03067319808035889

    Google Scholar 

  • Friedly JC, Rubin J (1992) Solute transport with multiple equilibrium-controlled or kinetically controlled chemical reactions. Water Resour Res 28:1935–1953. doi:10.1029/92WR00699

    Google Scholar 

  • Galceran J, Puy J, Salvador J, Cecília J, Leeuwen HPv (2001) Voltammetric lability of metal complexes at spherical microelectrodes with various radii. J Electroanal Chem 505:85–94. doi:10.1016/S0022-0728(01)00475-2

    Google Scholar 

  • Galceran J, Companys E, Puy J, Cecília J, Garcés JL (2004a) AGNES: a new electroanalytical technique for measuring free metal ion concentration. J Electroanal Chem 566:95–109

    Google Scholar 

  • Galceran J, Monné J, Puy J, Leeuwen HPv (2004b) The impact of the transient uptake flux on bioaccumulation: linear adsorption and first-order internalisation coupled with spherical semi-infinite mass transport. Mar Chem 85:89–102. doi:10.1016/j.marchem.2003.09.005

    Google Scholar 

  • Ge Y, MacDonald D, Sauvé S, Hendershot W (2005) Modeling of Cd and Pb speciation in soil solutions by WinHumicV and NICA-Donnan model. Environ Model Softw 20:353–359. doi:10.1016/j.envsoft.2003.12.014

    Google Scholar 

  • Gélabert A et al (2014) Uncoated and coated ZnO nanoparticle life cycle in synthetic seawater. Environ Toxicol Chem 33:341–349. doi:10.1002/etc.2447

    Google Scholar 

  • Goldberg S, Criscenti LJ, Turner DR, Davis JA, Cantrell KJ (2007) Adsorption-desorption processes in subsurface reactive transport modeling. Vadose Zone J 6:407–435. doi:10.2136/vzj2006.0085

    Google Scholar 

  • Groenenberg JE, Koopmans GF, Comans RNJ (2010) Uncertainty analysis of the nonideal competitive adsorption–Donnan model: effects of dissolved organic matter variability on predicted metal speciation in soil solution. Environ Sci Technol 44:1340–1346. doi:10.1021/es902615w

    Google Scholar 

  • Gustafsson JP (2001) Modeling the acid-base properties and metal complexation of humic substances with the Stockholm humic model. J Coll Interf Sci 244:102–112. doi:10.1006/jcis.2001.7871

    Google Scholar 

  • Gustafsson JP, Pechová P, Berggren D (2003) Modeling metal binding to soils: the role of natural organic matter. Environ Sci Technol 37:2767–2774. doi:10.1021/es026249t

    Google Scholar 

  • Gustafsson JP, Persson I, Kleja DB, Schaik JWJv (2007) Binding of iron(III) to organic soils: EXAFS spectroscopy and chemical equilibrium modeling. Environ Sci Technol 41:1232–1237. doi:10.1021/es0615730

    Google Scholar 

  • Guthrie JW et al (2005) Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: a comparison of approaches using electrochemical determination of free-metal-ion and labile complexes and a computer speciation model, WHAM V and VI. Anal Chim Acta 528:205–218. doi:10.1016/j.aca.2004.10.003

    Google Scholar 

  • Ha J, Gélabert A, Spormann AM, Brown GE Jr (2010) Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study. Geochim Cosmochim Acta 74:1–15. doi:10.1016/j.gca.2009.06.031

    Google Scholar 

  • Hamilton-Taylor J, Ahmed IAM, Davison W, Zhang H (2011) How well can we predict and measure metal speciation in freshwaters? Environ Chem 8:461–465. doi:10.1071/EN11031

    Google Scholar 

  • Hamon RE, Bertrand I, McLaughlin MJ (2002) Use and abuse of isotopic exchange data in soil chemistry. Aust J Soil Res 40:1371–1381. doi:10.1071/SR02046

    Google Scholar 

  • Hamon RE, Parker DR, Lombi E (2008) Advances in isotopic dilution techniques in trace element research: a review of methodologies, benefits, and limitations. In: Sparks D (ed) Advances in agronomy, vol 99. Elsevier Academic Press Inc, San Diego, pp 289–343. doi:10.1016/S0065-2113(08)00406-9

  • Han S, Naito W, Hanai Y, Masunaga S (2013) Evaluation of trace metals bioavailability in Japanese river waters using DGT and a chemical equilibrium model. Water Res 47:4880–4892. doi:10.1016/j.watres.2013.05.025

    Google Scholar 

  • Helleferich FG (1962) Ion exchange. McGraw-Hill, New York

    Google Scholar 

  • Hernlem BJ, Vane LM, Sayles GD (1996) Stability constants for complexes of the siderophore desferrioxamine B with selected heavy metal cations. Inorg Chim Acta 244:178–184. doi:10.1016/0020-1693(95)04780-8

    Google Scholar 

  • Hersman L, Lloyd T, Sposito G (1995) Siderophore-promoted dissolution of hematite. Geochim Cosmochim Acta 59:3327–3330

    Google Scholar 

  • Hiemstra T, Riemsdijk WHV (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J Coll Interf Sci 179:488–508. doi:10.1006/jcis.1996.0242

    Google Scholar 

  • Jorand F, Boué-Bigne F, Block JC, Urbain V (1998) Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances. Water Sci Technol 37:307–315

    Google Scholar 

  • Kalis EJJ, Weng L, Dousma F, Temminghoff EJM, Riemsdijk WHV (2006) Measuring free metal ion concentrations in situ in natural waters using the Donnan membrane technique. Environ Sci Technol 40:955–961. doi:10.1021/es051435v

    Google Scholar 

  • Kalis EJJ, Weng L, Temminghoff EJM, Riemsdijk WHv (2007) Measuring free metal ion concentrations in multicomponent solutions using the Donnan membrane technique. Anal Chem 79:1555–1563. doi:10.1021/ac0615403

    Google Scholar 

  • Kalvoda R, Kopanica L (1989) Adsorptive stripping voltammetry in trace analysis. Pure Appl Chem 61:97–112

    Google Scholar 

  • Keizer MG, Riemsdijk WHv (1994) ECOSAT: equilibrium calculation of speciation and transport. Manual Program. Agricultural University of Wageningen, Wageningen

    Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1692–1708. doi:10.1007/s11051-013-1692-4

    Google Scholar 

  • Kinniburgh DG, Riemsdijk WHv, Koopal LK, Borkovec M, Benedetti MF, Avena MJ (1999) Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids Surf A Physicochem Eng Asp 151:147–166. doi:10.1016/S0927-7757(98)00637-2

    Google Scholar 

  • Lamelas C, Benedetti M, Wilkinson KJ, Slaveykova VI (2006) Characterization of H+ and Cd2+ binding properties of the bacterial exopolysaccharides. Chemosphere 65:1362–1370. doi:10.1016/j.chemosphere.2006.04.021

    Google Scholar 

  • Lead JR, Wilkinson KJ (2007) Environmental colloids and particles: current knowledge and future developments. In: Wilkinson KJ, Lead JR (eds) Environmental colloids and particles: behaviour, separation and characterisation, vol 10., IUPAC Series on analytical and physical chemistry of environmental systemsWiley, Chichester, pp 1–15

    Google Scholar 

  • Leeuwen HPv (2001) Revisited the conception of lability of metal complexes. Electroanalysis 13:826–830. doi:10.1002/1521-4109(200106)13:10<826:AID-ELAN826>3.0.CO;2-J

    Google Scholar 

  • Leeuwen HPv, Jansen S (2005) Dynamic aspects of metal speciation by competitive ligand exchange–adsorptive stripping voltammetry (CLE–AdSV). J Electroanal Chem 579:337–342. doi:10.1016/j.jelechem.2005.03.006

    Google Scholar 

  • Leeuwen HPv et al (2005) Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environ Sci Technol 39:8545–8556. doi:10.1021/es050404x

    Google Scholar 

  • Lofts S, Tipping E (2011) Assessing WHAM/Model VII against field measurements of free metal ion concentrations: model performance and the role of uncertainty in parameters and inputs. Environ Chem 8:501–516. doi:10.1071/EN11049

    Google Scholar 

  • Lorenzo JI, Nieto O, Beiras R (2006) Anodic stripping voltammetry measures copper bioavailability for sea urchin larvae in the presence of fulvic acids. Environ Toxicol Chem 25:36–44. doi:10.1897/05-236R.1

    Google Scholar 

  • Louis Y, Cmuk P, Omanović D, Garnier C, Lenoble V, Mounier S, Pižeta I (2008) Speciation of trace metals in natural waters: the influence of an adsorbed layer of natural organic matter (NOM) on voltammetric behaviour of copper. Anal Chim Acta 606:37–44. doi:10.1016/j.aca.2007.11.011

    Google Scholar 

  • Lyklema H (2005) Pair interactions. In: Lyklema J (ed) Fundamentals of interface and colloid science. Volume IV: particulate colloids, vol 4. Fundamentals of interface and colloid science. Elsevier Academic Press, Amsterdam, pp 3.1–3.186

  • Marang L, Reiller P, Pepe M, Benedetti MF (2006) Donnan membrane approach: from equilibrium to dynamic speciation. Environ Sci Technol 40:5496–5501. doi:10.1021/es060608t

    Google Scholar 

  • Martin J-M, Dai M-H, Cauwet G (1995) Significance of colloids in the biogeochemical cycling of organic carbon and trace metals in the Venice Lagoon (Italy). Limnol Oceanogr 40:119–131

    Google Scholar 

  • Mawji E et al (2008) Hydroxamate siderophores: occurrence and importance in the Atlantic Ocean. Environ Sci Technol 42:8675–8680. doi:10.1021/es801884r

    Google Scholar 

  • Meeussen JCL (2003) ORCHESTRA: an object-oriented framework for implementing chemical equilibrium models. Environ Sci Technol 37:1175–1182. doi:10.1021/es025597s

    Google Scholar 

  • Meyer JS et al (1999) Binding of nickel and copper to fish gills predicts toxicity when water hardness varies, but free-ion activity does not. Environ Sci Technol 33:913–916. doi:10.1021/es980715q

    Google Scholar 

  • Meylan S, Odzak N, Behra R, Sigg L (2004) Speciation of copper and zinc in natural freshwater: comparison of voltammetric measurements, diffusive gradients in thin films (DGT) and chemical equilibrium models. Anal Chim Acta 510:91–100. doi:10.1016/j.aca.2003.12.052

    Google Scholar 

  • Mongin S, Uribe R, Puy J, Cecília J, Galceran J, Zhang H, Davison W (2011) Key role of the resin layer thickness in the lability of complexes measured by DGT. Environ Sci Technol 45:4869–4875. doi:10.1021/es200609v

    Google Scholar 

  • Morel FMM, Hering JG (1993) Principles and applications of aquatic chemistry. Wiley, Chichester

    Google Scholar 

  • Mota AM, Pinheiro JP, Gonçalves MLS (2012) Electrochemical methods for speciation of trace elements in marine waters. Dynamic aspects. J Phys Chem A 116:6433–6442. doi:10.1021/jp2124636

    Google Scholar 

  • Mueller KK, Lofts S, Fortin C, Campbell PGC (2012) Trace metal speciation predictions in natural aquatic systems: incorporation of dissolved organic matter (DOM) spectroscopic quality. Environ Chem 9:356–368. doi:10.1071/EN11156

    Google Scholar 

  • Neubauer U, Nowack B, Furrer G, Schulin R (2000) Heavy metal sorption on clay minerals affected by the siderophore desferrioxamine B. Environ Sci Technol 34:2749–2755. doi:10.1021/es990495w

    Google Scholar 

  • Nowack B, Xue H, Sigg L (1997) Influence of natural and anthropogenic ligands on metal transport during infiltration of river water to groundwater. Environ Sci Technol 31:866–872. doi:10.1021/es960556f

    Google Scholar 

  • Parat C, Authier I, Aguilar D, Companys E, Puy J, Galceran J, Potin-Gautier M (2011) Direct determination of free metal concentration by implementing stripping chronopotentiometry as the second stage of AGNES. Analyst 136:4337–4343. doi:10.1039/C1AN15481H

    Google Scholar 

  • Pesavento M, Alberti G, Biesuz R (2009) Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review. Anal Chim Acta 631:129–141. doi:10.1016/j.aca.2008.10.046

    Google Scholar 

  • Pinheiro JP, Leeuwen HPv (2004) Scanned stripping chronopotentiometry of metal complexes: lability diagnosis and stability computation. J Electroanal Chem 570:69–75. doi:10.1016/j.jelechem.2004.03.016

    Google Scholar 

  • Pinheiro JP, Minor M, Leeuwen HPv (2005) Metal speciation dynamics in colloidal ligand dispersions. Langmuir 21:8635–8642. doi:10.1021/la0504210

    Google Scholar 

  • Pinheiro JP, Salvador J, Companys E, Galceran J, Puy J (2010) Experimental verification of the metal flux enhancement in a mixture of two metal complexes: the Cd/NTA/glycine and Cd/NTA/citric acid systems. Phys Chem Chem Phys 12:1131–1138. doi:10.1039/B915486H

    Google Scholar 

  • Polubesova T, Chefetz B (2014) DOM-affected transformation of contaminants on mineral surfaces: a review. Critical Rev Environ Sci Technol 44:223–254. doi:10.1080/10643389.2012.710455

    Google Scholar 

  • Pomogailo AD, Kestelman VN (2005) Principles and mechanisms of nanoparticle stabilization by polymers. In: Pomogailo AD, Kestelman VN (eds) Metallopolymer nanocomposites. Springer, Berlin, vol 81, pp 65–113. doi:10.1007/3-540-26523-6_3

  • Powell PE, Cline GR, Reid CPP, Szaniszlo PJ (1980) Occurrence of hydroxamate siderophore iron chelators in soils. Nature 287:833–834. doi:10.1038/287833a0

    Google Scholar 

  • Pretsch E (2007) The new wave of ion-selective electrodes. Trends Anal Chem 26:47–51. doi:10.1016/j.trac.2006.10.006

    Google Scholar 

  • Puy J et al (2012) Lability criteria in diffusive gradients in thin film. J Phys Chem A 116:6564–6573. doi:10.1021/jp212629z

    Google Scholar 

  • Qin X, Liu F, Wang G (2012) Fractionation and kinetic processes of humic acid upon adsorption on colloidal hematite in aqueous solution with phosphate. Chem Eng J 209:458–463. doi:10.1016/j.cej.2012.08.026

    Google Scholar 

  • Rahmana MA et al (2014) Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35). Ecotoxicol Environ Saf 106:126–135. doi:10.1016/j.ecoenv.2014.03.004

    Google Scholar 

  • Reiller PE (2012) Modelling metal–humic substances–surface systems: reasons for success, failure and possible routes for peace of mind. Mineral Mag 76:2643–2658. doi:10.1180/minmag.2012.076.7.02

    Google Scholar 

  • Ren Z-L et al (2014) Metal speciation and dissolved organic matter composition in soil solutions. Chem Geol (in press)

  • Riemsdijk WHv, Koopal LK, Kinniburgh DG, Benedetti MF, Weng L (2006) Modeling the interactions between humics, ions, and mineral surfaces. Environ Sci Technol 40:7473–7480. doi:10.1021/es0607786

    Google Scholar 

  • Rodriguez-Gonzalez P, Marchante-Gayon JM, Alonso JIG, Sanz-Medel A (2005) Isotope dilution analysis for elemental speciation: a tutorial review. Spectrochim Acta Part B: Atomic Spectrosc 60:151–207. doi:10.1016/j.sab.2005.01.005

    Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J Basic Microbiol 53:303–317. doi:10.1002/jobm.201100552

    Google Scholar 

  • Sánchez-Marín P, Lorenzo JI, Mubiana VK, Blust R, Beiras R (2012) Copper uptake by the marine mussel Mytilus edulis in the presence of fulvic acids. Environ Toxicol Chem 31:1807–1813. doi:10.1002/etc.1874

    Google Scholar 

  • Sánchez-Marín P, Fortin C, Campbell PGC (2013) Copper and lead internalisation by freshwater microalgae at different carbonate concentrations. Environ Chem 10:80–90. doi:10.1071/EN13011

    Google Scholar 

  • Scally S, Davison W, Zhang H (2006) Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films. Anal Chim Acta 558:222–229. doi:10.1016/j.aca.2005.11.020

    Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854. doi:10.1111/j.1462-2920.2011.02556.x

    Google Scholar 

  • Serrano N et al (2007) Full-wave analysis of stripping chronopotentiograms at scanned deposition potential (SSCP) as a tool for heavy metal speciation: theoretical development and application to Cd(II)-phthalate and Cd(II)-iodide systems. J Electroanal Chem 600:275–284. doi:10.1016/j.jelechem.2006.10.007

    Google Scholar 

  • Shenker M, Chen Y, Hadar Y (1996) Stability constants of the fungal siderophore rhizoferrin with various microelements and calcium. Soil Sci Soc Am J 60:1140–1144. doi:10.2136/sssaj1996.03615995006000040026x

    Google Scholar 

  • Sigg L et al (2006) Comparison of analytical techniques for dynamic trace metal speciation in natural freshwaters. Environ Sci Technol 40:1934–1941. doi:10.1021/es051245k

    Google Scholar 

  • Sivry Y, Riotte J, Dupre B (2006) Study of exchangeable metal on colloidal humic acids and particulate matter by coupling ultrafiltration and isotopic tracers: application to natural waters. J Geochem Explor 88:144–147. doi:10.1016/j.gexplo.2005.08.101

    Google Scholar 

  • Sivry Y, Riotte J, Sappin-Didier V, Munoz M, Redon PO, Denaix L, Dupre B (2011) Multielementary (Cd, Cu, Pb, Zn, Ni) stable isotopic exchange kinetic (SIEK) method to characterize polymetallic contaminations. Environ Sci Technol 45:6247–6253. doi:10.1021/es2006644

    Google Scholar 

  • Sivry Y et al (2014) Behavior and fate of industrial zinc oxide nanoparticles in a carbonate-rich river water. Chemosphere 95:519–526. doi:10.1016/j.chemosphere.2013.09.110

    Google Scholar 

  • Slaveykova VI, Wilkinson KJ (2005) Predicting the bioavailability of metals and metal complexes: critical review of the biotic ligand model. Environ Chem 2:9–24

    Google Scholar 

  • Stuart MC, Vries Rd, Lyklema H (2005) Polyelectrolytes. In: Lyklema J (ed) Fundamentals of interface and colloid science. Volume V: soft colloids. Fundamentals of interface and colloid science. Elsevier Academic Press, Amsterdam, vol 5, pp 2.1–2.84

  • Sweileh JA, Lucyk D, Kratochvil B, Cantwell FF (1987) Specificity of the ion exchange—atomic absorption method for free copper(II) determination in natural waters. Anal Chem 59:586–592. doi:10.1021/ac00131a011

    Google Scholar 

  • Temminghoff EJM, Plette ACC, Eck RV, Riemsdijk WHV (2000) Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane Technique. Anal Chim Acta 417:149–157. doi:10.1016/S0003-2670(00)00935-1

    Google Scholar 

  • Tercier M-L, Buffle J (1996) Antifouling membrane-covered voltammetric microsensor for in situ measurements in natural waters. Anal Chem 68:3670–3678. doi:10.1021/ac960265p

    Google Scholar 

  • Tercier-Waeber M-L, Belmont-Hébert C, Buffle J (1998) Real-time continuous Mn(II) monitoring in lakes using a novel voltammetric in situ profiling system. Environ Sci Technol 32:1515–1521. doi:10.1021/es9706108

    Google Scholar 

  • Tercier-Waeber M-L et al (2000) A novel voltammetric probe with individually addressable gel-integrated microsensor arrays for real-time high spatial resolution concentration profile measurements. Electroanalysis 12:27–34. doi:10.1002/(SICI)1521-4109(20000101)12:1<27:AID-ELAN27>3.0.CO;2-R

    Google Scholar 

  • Tercier-Waeber M-L, Confalonieri F, Koudelka-Hep M, Dessureault-Rompré J, Graziottin F, Buffle J (2008) Gel-integrated voltammetric microsensors and submersible probes as reliable tools for environmental trace metal analysis and speciation. Electroanalysis 20:240–258. doi:10.1002/elan.200704067

    Google Scholar 

  • Tipping E (1998) Humic ion-binding model VI: an improved description of the interactions between protons and metal ions with humic substances. Aquat Geochem 4:3–48

    Google Scholar 

  • Tipping E, Rey-Castro C, Bryan SE, Hamilton-Taylor J (2002) Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation. Geochim Cosmochim Acta 66:3211–3224. doi:10.1016/S0016-7037(02)00930-4

    Google Scholar 

  • Tipping E, Lofts S, Sonke JE (2011) Humic ion-binding model VII: a revised parameterisation of cation-binding by humic substances. Environ Chem 8:225–235. doi:10.1071/EN11016

    Google Scholar 

  • Town RM (2008) Metal binding by heterogeneous ligands: kinetic master curves from SSCP waves. Environ Sci Technol 42:4014–4021. doi:10.1021/es703236b

    Google Scholar 

  • Town RM, Filella M (2002) Crucial role of the detection window in metal ion speciation analysis in aquatic systems: the interplay of thermodynamic and kinetic factors as exemplified by nickel and cobalt. Anal Chim Acta 466:285–293. doi:10.1016/S0003-2670(02)00570-6

    Google Scholar 

  • Town RM, Leeuwen HPv (2002a) Effects of adsorption in stripping chronopotentiometric metal speciation analysis. J Electroanal Chem 523:1–15. doi:10.1016/S0022-0728(02)00747-7

    Google Scholar 

  • Town RM, Leeuwen HPv (2002b) Significance of wave form parameters in stripping chronopotentiometric metal speciation analysis. J Electroanal Chem 535:11–25. doi:10.1016/S0022-0728(02)01157-9

    Google Scholar 

  • Town RM, Leeuwen HPv (2003) Stripping chronopotentiometry at scanned deposition potential (SSCP): part 2. Determination of metal ion speciation parameters. J Electroanal Chem 541:51–65. doi:10.1016/S0022-0728(02)01314-1

    Google Scholar 

  • Town RM, Leeuwen HPv (2004) Dynamic speciation analysis of heterogeneous metal complexes with natural ligands by stripping chronopotentiometry at scanned deposition potential (SSCP). Aust J Chem 57:983–992. doi:10.1071/CH04088

    Google Scholar 

  • Unsworth ER et al (2006) Model predictions of metal speciation in freshwaters compared to measurements by in situ techniques. Environ Sci Technol 40:1942–1949. doi:10.1021/es051246c

    Google Scholar 

  • Uribe R, Mongin S, Puy J, Cecília J, Galceran J, Zhang H, Davison W (2011) Contribution of partially labile complexes to the DGT metal flux. Environ Sci Technol 45:5317–5322. doi:10.1021/es200610n

    Google Scholar 

  • van Leeuwen HP, Town RM (2003) Electrochemical metal speciation analysis of chemically heterogeneous samples: the outstanding features of stripping chronopotentiometry at scanned deposition potential. Environ Sci Technol 37:3945–3952

    Google Scholar 

  • Vega FA, Weng L (2013) Speciation of heavy metals in River Rhine. Water Res 47:363–372. doi:10.1016/j.watres.2012.10.012

    Google Scholar 

  • Weng L, Riemsdijk WHV, Temminghoff EJM (2005) Kinetic aspects of Donnan membrane technique for measuring free trace cation concentration. Anal Chem 77:2852–2861. doi:10.1021/ac0485435

    Google Scholar 

  • Whitfield M, Turner DR (1979) Water-rock partition coefficients and the composition of river and seawater. Nature 278:132–136. doi:10.1038/278132a0

    Google Scholar 

  • Wilkinson KJ, Reinhardt A (2005) Contrasting roles of natural organic matter on colloidal stabilization and flocculation in freshwaters. In Flocculation in natural and engineered environmental systems. CRC press, Boca Raton

  • Worms IAM, Wilkinson KJ (2008) Determination of Ni2 + using an equilibrium ion exchange technique: important chemical factors and applicability to environmental samples. Anal Chim Acta 616:95–102. doi:10.1016/j.aca.2008.04.004

    Google Scholar 

  • Xiong J et al (2013) Lead binding to soil fulvic and humic acids: NICA-Donnan modeling and XAFS spectroscopy. Environ Sci Technol 47:11634–11642. doi:10.1021/es402123v

    Google Scholar 

  • Xue B-B, Sigg L (2002) Environmental electrochemistry. In: Tailefert M, Rozan TF (eds) Analyses of trace element biogeochemistry. American Chemical Society, Washington, p 336

    Google Scholar 

  • Zelano I et al (2013) Colloids and suspended particulate matters influence on Ni availability in surface waters of impacted ultramafic systems in Brazil. Coll Surf A Physicochem Eng Asp 435:36–47. doi:10.1016/j.colsurfa.2013.02.051

    Google Scholar 

  • Zhang H (2004) In-situ speciation of Ni and Zn in freshwaters: comparison between DGT measurements and speciation models. Environ Sci Technol 38:1421–1427. doi:10.1021/es034654u

    Google Scholar 

  • Zhang Z, Buffle J (2009a) Interfacial metal flux in ligand mixtures. 3. Unexpected flux enhancement due to kinetic interplay at the consuming surface, computed for aquatic systems. Environ Sci Technol 43:5762–5768. doi:10.1021/es9003526

    Google Scholar 

  • Zhang Z, Buffle J (2009b) Metal flux and dynamic speciation at (bio)interfaces. Part V: the roles of simple, fulvic and aggregate complexes on Pb flux in freshwater ligand mixtures, computed at planar consuming interfaces. Geochim Cosmochim Acta 73:1223–1235. doi:10.1016/j.gca.2008.11.025

    Google Scholar 

  • Zhang Z, Buffle J (2009c) Metal flux and dynamic speciation at (bio)interfaces. Part VI: the roles of simple, fulvic and aggregate complexes on computed metal flux in freshwater ligand mixtures; comparison of Pb, Zn and Ni at planar and microspherical interfaces. Geochim Cosmochim Acta 73:1236–1243. doi:10.1016/j.gca.2008.11.026

    Google Scholar 

  • Zhang H, Davison W (1995) Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal Chem 72:3391–3400. doi:10.1021/ac00115a005

    Google Scholar 

  • Zhang H, Davison W (2000) Direct In situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films. Anal Chem 72:4447–4457. doi:10.1021/ac0004097

    Google Scholar 

  • Zhang Z, Buffle J, Alemani D (2007) Metal flux and dynamic speciation at (bio)interfaces. Part II: evaluation and compilation of physicochemical parameters for complexes with particles and aggregates. Environ Sci Technol 41:7621–7631. doi:10.1021/es071117r

    Google Scholar 

  • Zhang Z, Buffle J, Startchev K, Alemani D (2008) FLUXY: a simple code for computing steady-state metal fluxes at consuming (bio)interfaces, in natural waters. Environ Chem 5:204–217. doi:10.1071/EN07095

    Google Scholar 

  • Zhang Z, Buffle J, Town RM, Puy J, Leeuwen HPv (2009) Metal flux in ligand mixtures. 2. Flux enhancement due to kinetic interplay: comparison of the reaction layer approximation with a rigorous approach. J Phys Chem A 113:6572–6580. doi:10.1021/jp8114308

    Google Scholar 

  • Zhang Z, Alemani D, Buffle J, Town RM, Wilkinson KJ (2011) Metal flux through consuming interfaces in ligand mixtures: boundary conditions do not influence the lability and relative contributions of metal species. Phys Chem Chem Phys 13:17606–17614. doi:10.1039/C1CP20705A

    Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by (1) Fundação para a Ciência e Tecnologia (FCT, Portugal): Science 2008 IST-CQE3 “Environmental Chemistry” Assistant Researcher position to RFD and Project PTDC/AAC-AMB/110595/2009, and (2) ANR-FCT project No. 12-IS06-0001–SPECIES: “Mesure in situ de la spéciation des métaux trace”, by ANR Project Norma RHIZO, call CES 2009 (09-CESA-010) and PIREN Seine project Phase 5 and 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rute F. Domingos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingos, R.F., Gélabert, A., Carreira, S. et al. Metals in the Aquatic Environment—Interactions and Implications for the Speciation and Bioavailability: A Critical Overview. Aquat Geochem 21, 231–257 (2015). https://doi.org/10.1007/s10498-014-9251-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-014-9251-x

Keywords

Navigation