Skip to main content
Log in

A Discrete Adjoint Approach for the Optimization of Unsteady Turbulent Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In this paper we present a discrete adjoint approach for the optimization of unsteady, turbulent flows. While discrete adjoint methods usually rely on the use of the reverse mode of Automatic Differentiation (AD), which is difficult to apply to complex unsteady problems, our approach is based on the discrete adjoint equation directly and can be implemented efficiently with the use of a sparse forward mode of AD. We demonstrate the approach on the basis of a parallel, multigrid flow solver that incorporates various turbulence models. Due to grid deformation routines also shape optimization problems can be handled. We consider the relevant aspects, in particular the efficient generation of the discrete adjoint equation and the parallel implementation of a multigrid method for the adjoint, which is derived from the multigrid scheme of the flow solver. Numerical results show the efficiency of the approach for a shape optimization problem involving a three dimensional Large Eddy Simulation (LES).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FASTEST User Manual: Fachgebiet Numerische Berechnungsverfahren im Maschinenbau. Technische Universität Darmstadt (2005)

  2. MPI: A message-passing interface standard, Version 2.2. Message Passing Interface Forum (2009)

  3. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L., Smith, B., Zhang, H.: Petsc Users Manual Revision 3.2 (2011)

  4. Briggs, W., Henson, V., McCormick, S.: A multigrid tutorial. Society for Industrial Mathematics (2000)

  5. Carnarius, A., Thiele, F., Özkaya, E., Gauger, N.: Adjoint approaches for optimal flow control. In: 5th Flow Control Conference, AIAA Paper AIAA-2010-5088, Chicago, Illinois (2010)

  6. Chien, K.Y.: Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model. AIAA J. 20(1), 33–38 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Christianson, B.: Reverse accumulation and attractive fixed points. Optim. Methods Softw. 3(4), 311–326 (1994)

    Article  MathSciNet  Google Scholar 

  8. Durst, F., Schäfer, M.: A parallel block structured multigrid method for the prediction of incompressible flows. Int. J. Numer. Methods Fluids 22(6), 549–565 (1996)

    Article  MATH  Google Scholar 

  9. Elman, H., Howle, V., Shadid, J., Shuttleworth, R., Tuminaro, R.: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations. J. Comput. Phys. 227(3), 1790–1808 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Germano, M.: Turbulence: the filtering approach. J. Fluid Mech. 238, 325–336 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giering, R., Kaminski, T., Slawig, T.: Generating efficient derivative code with TAF: adjoint and tangent linear Euler flow around an airfoil. Future Gener. Comput. Syst. 21(8), 1345–1355 (2005)

    Article  Google Scholar 

  12. Giles, M.: On the use of Runge-Kutta time-marching and multigrid for the solution of steady adjoint equations. Tech. Rep. 00/10, Oxford (2000)

  13. Griewank, A.: Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optim. Methods Softw. 1, 35–54 (1992)

    Article  Google Scholar 

  14. Griewank, A., Walther, A.: Evaluating Derivatives, 2nd edn. Society for Industrial and Applied Mathematics, Philadephia, PA (2008)

    MATH  Google Scholar 

  15. Grundmann, S., Tropea, C.: Experimental damping of boundary-layer oscillations using DBD plasma actuators. In: The Seventh International Symposium on Engineering Turbulence Modelling and Measurements, ETMM7. International Journal of Heat and Fluid Flow, vol. 30, no. 3, pp. 394–402 (2009)

  16. Gu, T., Zuo, X., Liu, X., Li, P.: An improved parallel hybrid bi-conjugate gradient method suitable for distributed parallel computing. J. Comput. Appl. Math. 226(1), 55–65 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gunzburger, M., Wood, H.G., III: Perspectives in flow control and optimization. Appl. Mech. Rev. 56(6), 57–62 (2003)

    Article  Google Scholar 

  18. Hess, W., Ulbrich, S.: An inexact ℓ1 penalty SQP algorithm for PDE constrained optimization with an application to shape optimization in linear elasticity. Optim. Methods Softw (2012). doi:10.1080/10556788.2011.651082

    Google Scholar 

  19. Hinze, M.: Control of weakly conductive fluids by near wall Lorentz forces. GAMM-Mitteilungen 30(1), 149–158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, Mathematical modelling, vol. 23. Springer, Dordrecht, NL (2009)

    Google Scholar 

  21. Jones, W., Launder, B.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer 15, 301–314 (1972)

    Article  Google Scholar 

  22. Kretz, F.: Auslegung, Konstruktion und Erprobung einer Druckgradienten-Messstecke. Diplomarbeit, Technische Universität Darmstadt (2006)

  23. Nadarajah, S., Jameson, A.: Optimum shape design for unsteady flows with time-accurate continuous and discrete adjoint methods. AIAA J. 45(7), 1478 (2007)

    Article  Google Scholar 

  24. Özkaya, E., Gauger, N.: An efficient one-shot algorithm for aerodynamic shape design. New Results in Numerical and Experimental Fluid Mechanics VII, pp. 35–42 (2010)

  25. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Clarendon Press (1999)

  26. ur Rehman, M., Vuik, C., Segal, G.: Preconditioners for the steady incompressible Navier-Stokes problem. Int. J. Appl. Math. 38, 223–232 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Saad, Y., Schultz, M.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7(3), 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schlenkrich, S., Walther, A., Gauger, N., Heinrich, R.: Differentiating fixed point iterations with ADOL-C: gradient calculation for fluid dynamics. In: Bock, H.G., Kostina, E., Phu, H., Rannacher, R. (eds.) Modeling, Simulation and Optimization of Complex Processes – Proceedings of 3rd HPSC 2006, pp. 499–508 (2008)

  29. Segar, M.K.: A SLAP for the Masses, pp. 135–155. John Wiley & Sons, Inc., New York, NY, USA (1989)

    Google Scholar 

  30. Smagorinsky, J.: General circulation experiments with the primitive equation. Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  31. Ulbrich, M., Ulbrich, S.: Automatic differentiation: a structure-exploiting forward mode with almost optimal complexity for Kantorovič trees. Applied Math Parallel Comput, pp. 327–357 (1996)

  32. Walther, A.: Program reversal schedules for single- and multi-processor machines. Ph.D. thesis, Institute of Scientific Computing, Technical University Dresden, Germany (1999)

  33. Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries (1994)

  34. Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids 4, 1510–1520 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zymaris, A., Papadimitriou, D., Giannakoglou, K., Othmer, C.: Continuous adjoint approach to the Spalart-Allmaras turbulence model for incompressible flows. Comput. Fluids 38(8), 1528–1538 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Roth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, R., Ulbrich, S. A Discrete Adjoint Approach for the Optimization of Unsteady Turbulent Flows. Flow Turbulence Combust 90, 763–783 (2013). https://doi.org/10.1007/s10494-012-9439-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-012-9439-3

Keywords

Navigation