Skip to main content
Log in

What drives the dynamics of a soil mite population under seasonal flooding? A null model analysis

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Floods can inflict high mortality on terrestrial organisms, but may also promote adaptive evolution. In seasonal floodplains, several taxa show flood-related traits that may be important for their long-term persistence, but the available evidence is conflicting. Here, we used a simulation approach to investigate the interplay between seasonal floods and submersion resistance in driving the population dynamics of the parthenogenetic soil mite Rostrozetes ovulum in an Amazonian blackwater floodplain. First, we gathered data from two flood cycles to estimate field survival rate. Next, we used further data from a submersion survival laboratory experiment and a historical flood record to build a null model for R. ovulum’s survival rate under seasonal flooding, and then tested it against field survival estimates. Floods caused marked density declines, but the two estimates of field survival rate were statistically equivalent, suggesting relatively constant survival across years. Submersion survival time varied tenfold among individuals, but its variability was within the range known for life history traits of other asexual invertebrates. Both field survival rates were consistent with the null model, supporting seasonal flooding as the main mortality factor. Surprisingly, though, average flood duration was actually larger than the average mite could survive, suggesting that population persistence relies on relatively rare, super-resistant phenotypes. Overall, the studied R. ovulum population appears to have a mainly density-independent dynamics across years, with its viability depending on mechanisms that buffer flood survival rate against temporal oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adis J (1981) Comparative ecological studies of the terrestrial arthropod fauna in central Amazonian inundation-forests. Amazoniana 7:87–173

    Google Scholar 

  • Adis J (1984) “Seasonal igapó”- forest of Central Amazonian blackwater rivers and their terrestrial arthropod fauna. In: Sioli H (ed) The Amazon. Liminology and landscape ecology of a mighty tropical river and its basin. Junk, Dordrecht, pp 245–268

    Google Scholar 

  • Adis J (1986) An “aquatic” millipede from a Central Amazonian inundation forest. Oecologia 68:347–349. doi:10.1007/BF01036737

    Article  Google Scholar 

  • Adis J (1987) Extraction of arthropods from Neotropical soils with a modified Kempson apparatus. J Trop Ecol 3:131–138. doi:10.1017/S0266467400001863

    Article  Google Scholar 

  • Adis J, Junk WJ (2002) Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: a review. Freshwater Biol 47:711–731. doi:10.1046/j.1365-2427.2002.00892.x

    Article  Google Scholar 

  • Adis J, Messner B (1991) Langzeit-Überflutungsresistenz als Überlebensstrategie bei terrestrischen Arthropoden.—Beispiele aus zentralamazonischen Überschwemmungsgebieten. Deut Entomol Z 38:211–223

    Article  Google Scholar 

  • Beck L (1965) Über Variabilität und Wertigkeit morphologischer Merkmale bei adulten Oribatiden (Arachnida, Acari) am Beispiel der Gattung Rostrozetes Sellnick, 1925. Abh Senckenberg Naturf Ges 508:1–64

    Google Scholar 

  • Beck L (1969) Zum jahreszeitlichen Massenwechsel zweier Oribatidenarten (Acari) im neotropischen Überschwemmungswald. Verh Deutsch Zool Ges 32:535–540

    Google Scholar 

  • Beck L (1972) Der Einfluss der jahresperiodischen Überflutungen auf den Massenwechsel der Bodenarthropoden im zentralamazonischen Regenwaldgebiet. Pedobiologia 12:133–148

    Google Scholar 

  • Browne RA, Sallee SE, Grosch DS, Segreti WO, Purser SM (1984) Partitioning genetic and environmental components of reproduction and lifespan in Artemia. Ecology 65:949–960. doi:10.2307/1938067

    Article  Google Scholar 

  • Danks HV (2007) The elements of seasonal adaptation in insects. Can Entomol 139:1–44. doi:10.4039/n06-048

    Article  Google Scholar 

  • Fox G (2005) Extinction risk of heterogeneous populations. Ecology 86:1191–1198. doi:10.1890/04-0594

    Article  Google Scholar 

  • Franklin EN, Schubart HOR, Adis J (1997a) Ácaros do solo (Acari: Oribatida) edáficos de duas florestas inundáveis da Amazônia Central: distribuição vertical, abundância e recolonização do solo após inundação. Rev Bras Biol 57:501–520

    Google Scholar 

  • Franklin E, Adis J, Woas S (1997b) The oribatid mites. In: Junk WJ (ed) The Central Amazon floodplain. Ecology of a pulsing system. Springer, Berlin, pp 331–349

    Chapter  Google Scholar 

  • Franklin E, Guimarães RL, Adis J, Schubart HOR (2001) Resistência à submersão de ácaros (Acari: Oribatida) terrestres de florestas inundáveis de terra firme na Amazônia Central em condições experimentais de laboratório. Acta Amaz 31:285–298

    Google Scholar 

  • Franklin E, Santos EMR, Albuquerque MIC (2006) Diversity and distribution of oribatid mites (Acari: Oribatida) in lowland rain forest in Peru and in several environments of the Brazilians States of Amazonas, Rondônia, Roraima and Pará. Braz J Biol 66:999–1020. doi:10.1590/S1519-69842006000600007

    PubMed  CAS  Google Scholar 

  • Gaillard JM, Yoccoz NG (2003) Temporal variation in survival of mammals: a case of environmental canalization? Ecology 84:3294–3306. doi:10.1890/02-0409

    Article  Google Scholar 

  • Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institution Press, Washington

    Google Scholar 

  • Heethoff M, Norton RA, Scheu S, Maraun M (2009) Parthenogenesis in oribatid mites (Acari, Oribatida): evolution without sex. In: Schön I, Martens K, van Dijk P (eds) Lost sex: the evolutionary biology of parthenogenesis. Springer, Dordrecht, pp 241–257

    Chapter  Google Scholar 

  • Jokela J, Lively CM, Fox JA, Dybdahl MF (1997) Flat reaction norms and “frozen” phenotypic variation in clonal snails (Potamopyrgus antipodarum). Evolution 51:1120–1129

    Article  Google Scholar 

  • Junk W (1997) The central Amazon floodplain: ecology of a pulsing system. Springer, Berlin

    Book  Google Scholar 

  • Karels TJ, Boonstra R (2000) Concurrent density dependence and independence in populations of arctic ground squirrels. Nature 408:460–463. doi:10.1038/35044064

    Article  PubMed  CAS  Google Scholar 

  • Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Amer Nat 142:911–927

    Article  Google Scholar 

  • Lytle D (2001) Disturbance regimes and life-history evolution. Amer Nat 157:525–536. doi:10.1086/319930

    Article  CAS  Google Scholar 

  • Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454:100–103. doi:10.1038/nature06922

    Article  PubMed  CAS  Google Scholar 

  • Messner B, Adis J (2000) Morphologische Studien und vergleichende Biologie plastronatmender Arthropoden. Drosera 2000:113–124

    Google Scholar 

  • Messner B, Adis J, Franklin E (1992) Eine vergleichende Untersuchung über die Plastronstrukturen bei Milben. Deut Entomol Z 38:159–176. doi:10.1002/mmnd.19920390124

    Google Scholar 

  • Miller DA, Clarck WR, Arnold SJ, Bronikowski AM (2011) Stochastic population dynamics in populations of western terrestrial garter snakes with divergent life histories. Ecology 92:1658–1671. doi:10.1890/10-1438.1

    Article  PubMed  Google Scholar 

  • Norton RA, Behan-Pelletier VM (2009) Suborder Oribatida. In: Krantz GW, Walter DE (eds) A manual of acarology. Texas Tech University Press, Lubbock, pp 430–564

    Google Scholar 

  • Norton RA, Kethley JB (1989) Berlese’s North American oribatid mites: historical notes, recombinations, synonymies and type designations. Redia 62:421–499

    Google Scholar 

  • Pfister CA (1998) Patterns of variance in stage-structured populations: evolutionary predictions and ecological implications. Proc Natl Acad Sci USA 95:213–218

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Prance GT (1979) Notes on the vegetation of Amazonas III. Terminology of Amazonas forest types subject to inundation. Brittonia 31:26–38. doi:10.2307/2806669

    Article  Google Scholar 

  • Preisser EL, Dugaw CJ, Dennis B, Strong DR (2005) Long-term survival of the entomopathogenic nematode Heterorhabditis marelatus. Environ Entomol 34:1501–1506. doi:10.1603/0046-225X(2005)034[1501:LSOTEN]2.0.CO;2

    Article  Google Scholar 

  • Pyke DA, Thompson JN (1986) Statistical analysis of survival and removal rate experiments. Ecology 67:240–245. doi:10.2307/1938523

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  • Schowalter TD (2012) Insect responses to major landscape-level disturbance. Annu Rev Entomol 57:1–20. doi:10.1146/annurev-ento-120710-100610

    Article  PubMed  CAS  Google Scholar 

  • Schuster R (1965) Die Oekologie der terrestrischen Kleinfauna des Meeresstrandes. Verh Deut Z 28:492–521

    Google Scholar 

  • Seniczak A (2006) The effect of density on life-history parameters and morphology of Archegozetes longisetosus Aoki, 1965 (Acari: Oribatida) in laboratory conditions. Biological Lett 43:209–213

    Google Scholar 

  • Souza W (1984) The role of disturbance in natural communities. Annu Rev Ecol Syst 15:353–391

    Article  Google Scholar 

  • Zerm M, Adis J (2000) On the life cycles of Phaeoxantha species (Coleoptera: Cicindelidae) from Central Amazonian floodplains (Brazil). Ecotropica 6:141–155

    Google Scholar 

  • Zerm M, Adis J (2001) Further observations on the natural history and survival strategies of riverine tiger beetles (Coleoptera: Cicindelidae) from open habitats in Central Amazonian floodplains (Brazil). Ecotropica 7:115–137

    Google Scholar 

  • Zerm M, Adis J (2003) Exceptional anoxia resistance in larval tiger beetle, Phaeoxantha klugii (Coleoptera: Cicindelidae) from Central Amazonian floodplains (Brazil). Physiol Entomol 28:150–153. doi:10.1046/j.1365-3032.2003.00325.x

    Article  Google Scholar 

  • Zerm M, Adis J, Krumme U (2004a) Circulatory responses to submersion in larvae of Phaeoxantha klugii (Coleoptera: Cicindelidae) from Central Amazonian floodplains. Stud Neotrop Fauna E 39:91–94. doi:10.1080/01650520412331271025

    Article  Google Scholar 

  • Zerm M, Zinkler D, Adis J (2004b) Oxygen uptake and local Po2 profiles in submerged larvae of Phaeoxantha klugii (Coleoptera: Cicindelidae), as well as their metabolic rate in air. Physiol Biochem Zool 77:378–389

    Article  PubMed  CAS  Google Scholar 

  • Zerm M, Walenciak O, Val A, Adis J (2004c) Evidence for anaerobic metabolism in the larval tiger beetle, Phaeoxantha klugii (Col. Cicindelidae) from a Central Amazonian floodplain (Brazil). Physiol Entomol 29:483–488. doi:10.1111/j.0307-6962.2004.00416.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Roy A. Norton and three anonymous referees for providing comments and suggestions that much improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Aurélio Costa Lima Pequeno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pequeno, P.A.C.L., Franklin, E. What drives the dynamics of a soil mite population under seasonal flooding? A null model analysis. Exp Appl Acarol 62, 215–224 (2014). https://doi.org/10.1007/s10493-013-9731-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-013-9731-5

Keywords

Navigation