Skip to main content
Log in

CMOS silicon avalanche photodiodes for NIR light detection: a survey

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper surveys recent research on CMOS silicon avalanche photodiodes (SiAPD) and presents the design of a SiAPD based photoreceiver dedicated to near-infrared spectroscopy (NIRS) application. Near-infrared spectroscopy provides an inexpensive, non-invasive, and portable means to image brain function, and is one of the most efficient diagnostic techniques of different neurological diseases. In NIRS system, brain tissue is penetrated by near-infrared (NIR) radiation and the reflected signal is captured by a photodiode. Since the reflected NIR signal has very low amplitude, SiAPD is a better choice than regular photodiode for NIR signal detection due to SiAPD`s ability to amplify the photo generated signal by avalanche multiplication. Design requirements of using CMOS SiAPDs for NIR light detection are discussed, and the challenges of fabricating SiAPDs using standard CMOS process are addressed. Performances of state-of-the-art CMOS SiAPDs with different device structures are summarized and compared. The efficacy of the proposed SiAPD based photoreceiver is confirmed by post layout simulation. Finally, the SiAPD and its associated circuits has been implemented in one chip using 0.35 μm standard CMOS technology for an integrated NIRS system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Refaat, T. F., Elsayed-Ali, H. E., & DeYoung, R. J. (2001). Drift-diffusion model for reach-through avalanche photodiodes. Optical Engineering, 40(9), 1928–1935.

    Article  Google Scholar 

  2. Faramarzpour, N., Deen, M. J., Shirani, S., & Fang, Q. (2008). Fully integrated single photon avalanche diode detector in standard CMOS 0.18-μm technology. IEEE Transactions on Electron Devices, 55(3), 760–768.

    Article  Google Scholar 

  3. Achigui, H. F., Sawan, M., & Fayomi, C. J. B. (2008). A monolithic based NIRS front-end wireless sensor. Microelectronics Journal, 39(10), 1209–1217.

    Article  Google Scholar 

  4. Bozkurt, A., Rosen, A., Rosen, H., & Onaral, B. (2005). A portable near infrared spectroscopy system for bedside monitoring of newborn brain. Biomedical Engineering Online, 4, 29.

    Article  Google Scholar 

  5. Franceschini, M. A., & Boas, D. A. (2004). Noninvasive measurement of neuronal activity with near-infrared optical imaging. Neuroimage, 21(1), 372–386.

    Article  Google Scholar 

  6. Soraghan, C., Matthews, F., Markham, C., Pearlmutter, B. A., O’Neill, R., & Ward, T. E. (2008). A 12-channel, real-time near-infrared spectroscopy instrument for brain-computer interface applications. In Proceedings of 30th Annual International IEEE EMBS Conference (pp. 5648–5651).

  7. Haensse, D., Szabo, P., Brown, D., Wolf, M., et al. (2005). New multichannel near infrared spectrophotometry system for functional studies of the brain in adults and neonates. Optics Express, 13(12), 4525–4538.

    Article  Google Scholar 

  8. Wolf, M., Wolf, U., Gratton, E., et al. (2003). Fast cerebral functional signal in the 100-ms range detected in the visual cortex by frequency-domain near-infrared spectrophotometry. Psychophysiology, 40(4), 521–528.

    Article  Google Scholar 

  9. Wolf, M., Wolf, W., et al. (2002). Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: A near-infrared spectroscopy study. Neuroimage, 16, 704–712.

    Article  Google Scholar 

  10. Ruben, J., Wenzel, R., & Villringer, A. (1997). Haemoglobin oxygenation changes during visual stimulation in the occipital cortex. Advances in Experimental Medicine and Biology, 428, 181–187.

    Article  Google Scholar 

  11. Wolf, M., Morren, G. D., & Bucher, H. U. (2008). Near infrared spectroscopy to study the brain: An overview. Opto-electronics Review, 16(4), 413–419.

    Article  Google Scholar 

  12. Yang, Q. (2005). Design of front-end amplifier for optical receiver in 0.5 micrometer CMOS technology. MSc Thesis, University of Hawai.

  13. Phang, K. (2001). CMOS optical preamplifier design using graphical circuit analysis. PhD thesis, University of Toronto.

  14. Peluso, V., Vancorenland, P., Steyaert, M., & Sansen, W. (1997). 900 mV differential class AB OTA for switched opamp applications. Electronics Letters, 33(17), 1455–1456.

    Article  Google Scholar 

  15. Zappa, F., Tisa, S., Gulinatti, A., Gallivanoni, A., & Cova, S. (2005). Complete single-photon counting and timing module in a microchip. Optics Letters, 30(11), 1327–1329.

    Article  Google Scholar 

  16. Lawrence, W. G., Christian, J. F., Augustine, F. L., Squillante, M. R., & Entine, G. (2005). Development and characterization of CMOS avalanche photodiode arrays. In Proceedings of SPIE, 5726 (pp. 122–132).

  17. Dalla Mora, A., Tosi, A., Tisa, S., & Zappa, F. (2007). Single-photon avalanche diode model for circuit simulations. IEEE Photonics Technology Letters, 19, 1922–1924.

    Article  Google Scholar 

  18. Tisa, S., Zappa, F., Tosi, A., & Cova, S. (2007). Electronics for single photon avalanche diode arrays. Sensors and Actuators A, 140, 113–122.

    Article  Google Scholar 

  19. American National Standards Institute (2010). http://www.ansi.org/. Accessed 12 Oct 2010.

  20. Normandin, F., Sawan, M., & Faubert, J. (2005). New integrated front-end for a noninvasive brain imaging system based on near-infrared spectroreflectometry. IEEE Transactions on Circuits and Systems I, 52(12), 2663–2671.

    Article  Google Scholar 

  21. Gulinatti, A., Rech, I., Maccagnani, P., Ghioni, M., & Cova, S. (2005). Large-area avalanche diodes for picosecond time-correlated photon counting. In Proceedings of ESSDERC (pp. 355–358).

  22. Ghioni, M., Gulinatti, A., Rech, I., Zappa, F., & Cova, S. (2007). Progress in silicon single-photon avalanche diodes. IEEE Journal of Selected Topics in Quantum Electronics, 13(4), 852–862.

    Article  Google Scholar 

  23. Sze, S. M. (1981). Physics of semiconductor devices. New York: Wiley.

    Google Scholar 

  24. Zappa, F., Tisa, S., Tosi, A., & Cova, S. (2007). Principles and features of single-photon avalanche diode arrays. Sensors and Actuators A, 140, 103–112.

    Article  Google Scholar 

  25. Optical properties of silicon. (2010) http://pvcdrom.pveducation.org/APPEND/OPTICAL.HTM. Accessed 12 Oct 2010.

  26. McIntyre, R. J. (1966). Multiplication noise in uniform avalanche diodes. IEEE Transactions on Electron Devices, 13(1), 164–168.

    Article  Google Scholar 

  27. Moutaye, E. R., & Tap-Béteille, H. (2008). CMOS avalanche photodiode embedded in a phase-shift laser rangefinder. IEEE Transactions on Electron Devices, 55(12), 3396–3401.

    Article  Google Scholar 

  28. Charbon, E. (2008). Towards large scale CMOS single-photon detector arrays for lab-on-chip applications. Journal of Physics D. Applied Physics, 41, 094010.

    Article  Google Scholar 

  29. Kim, Y., Jun, I., & Kim, K. H. (2008). Design and characterization of CMOS avalanche photodiode with charge sensitive preamplifier. IEEE Transactions on Nuclear Science, 55(3), 1376–1380.

    Article  Google Scholar 

  30. Rochas, A., Pauchard, A. R., Popovic, R. S., et al. (2002). Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies. IEEE Transactions on Electron Devices, 49(3), 387–393.

    Article  Google Scholar 

  31. Rochas, A., Gisin, N., et al. (2003). Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology. Review of Scientific Instruments, 74(7), 3264–3270.

    Article  Google Scholar 

  32. Rochas, A., Rigler, R., et al. (2003). First fully integrated 2-D array of single-photon detectors in standard CMOS technology. IEEE Photonics Technology Letters, 15(7), 963–965.

    Article  Google Scholar 

  33. Finkelstein, H., Hsu, M. J., & Esener, S. C. (2006). STI-bounded single-photon avalanche diode in a deep-submicrometer CMOS technology. IEEE Electron Device Letters, 27(11), 887–889.

    Article  Google Scholar 

  34. Gersbach, M., Niclass, C., & Grant, L. (2008). A single photon detector implemented in a 130 nm CMOS imaging process. In Proceedings of the 38th Eur. Solid-State Device Research Conference (pp. 270–273).

  35. Niclass, C., Gersbach, M., Henderson, R., Grant, L., & Charbon, E. (2007). A single photon avalanche diode implemented in 130-nm CMOS technology. IEEE Journal of Selected Topics in Quantum Electronics, 13(4), 863–869.

    Article  Google Scholar 

  36. Xiao, Z., Pantic, D., & Popovic, R. S. (2007). A new single photon avalanche diode in CMOS high-voltage technology. In Proceedings of Transducers and Eurosensors (pp. 1365–1368).

  37. Tisa, S., Tosi, A., & Zappa, F. (2007). Fully-integrated CMOS single photon counter. Optics Express, 15(6), 2873–2887.

    Article  Google Scholar 

  38. Razeghi, M. (2010). Technology of quantum devices (p. 2010). London: Springer.

    Book  Google Scholar 

  39. Cova, S., Ghioni, M., Lacaita, A., Samori, C., & Zappa, F. (1996). Avalanche photodiodes and quenching circuits for single-photon detection. Applied Optics, 35(12), 1956–1976.

    Article  Google Scholar 

  40. Zappa, F., Giudice, A., Ghioni, M., & Cova, S. (2002). Fully-integrated active-quenching circuit for single-photon detection. In Proceedings of the 28th European solid-state circuits conference, 2002, pp. 355–358.

  41. Zappa, F., Lotito, A., & Tisa, S. (2005). Photon-counting chip for avalanche detectors. IEEE Photonics Technology Letters, 17(1), 184–186.

    Article  Google Scholar 

  42. Cronin, D., Moloney, A. M., & Morrison, A. P. (2004). Simulated monolithically integrated single photon counter. In Proc. IEEE high frequency postgraduate student colloquium 2004, pp. 9–14.

  43. Phang, K., & Johns, D. A. (2001). A 1 V 1 mW CMOS front-end with on-chip dynamic gate biasing for a 75 Mb/s optical receiver. In IEEE international solid-state circuits conference, San Francisco, CA, USA, pp. 218–220.

Download references

Acknowledgments

We gratefully acknowledge financial support from the Heart and Stroke Foundation of Canada (HSFC) and the Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afrin Sultana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sultana, A., Kamrani, E. & Sawan, M. CMOS silicon avalanche photodiodes for NIR light detection: a survey. Analog Integr Circ Sig Process 70, 1–13 (2012). https://doi.org/10.1007/s10470-011-9641-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-011-9641-6

Keywords

Navigation