Skip to main content
Log in

The effect of organic sorbates on water associated with environmentally important sorbents: estimating and the LFER analysis

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The effect of organic sorbates on the water associated with naturally occurring sorbents is of significant interest since it probes the hydration of a sorbate-specific microenvironment and its role in a compound partitioning between various environmental compartments. This effect was described in a thermodynamically strict way by converting the sorption isotherms of organic vapors on variously hydrated sorbents into the derivatives relating the change in the amount of water associated with a sorbent to the change in the amount of an organic sorbate. Further, these derivatives were analyzed by means of the Linear Free Energy Relationship (LFER). The analysis included the sorption data for various organic vapors on such environmentally important sorbents as quartz, metal oxides, calcite, clay minerals and humic acid. From the LFER analysis it followed that (i) organic sorbate polarizability contributions from n- and π-electrons resulted in driving water into the sorbent phase; (ii) the increasing volume of the organic compounds involved expelling water molecules; (iii) the increasing hydrogen-bond acidity and basicity of organic sorbates resulted in expelling water from inorganic surfaces but in enhancing hydration of the humic phase. In contrast to inorganic surfaces, when sorbed on strongly hydrated humic acid, the majority of organic sorbates containing oxygen, nitrogen or sulfur atoms drive water into the sorbent phase. Several molecules of water may need to be cosorbed by a humic sorbent for each sorbed molecule of an organic compound thus supporting the possibility of the concomitant participation of a number of water molecules in organic sorbate–humic matter interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abraham, M.H., Andonian-Haftvan, J., Whiting, G.S., Leo, A., Taft, R.S.: Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapors in water at 298 K, and a new method for its determination. J. Chem. Soc. Perkin Trans. II, 1777–1791 (1994)

    Google Scholar 

  • Borisover, M.D., Graber, E.R.: Specific interactions of nonionic organic compounds with soil organic carbon. Chemosphere 34, 1761–1776 (1997)

    Article  CAS  Google Scholar 

  • Borisover, M., Graber, E.R.: Simplified Link Solvation Model (LSM) for sorption in natural organic matter. Langmuir 18, 4775–4782 (2002)

    Article  CAS  Google Scholar 

  • Borisover, M., Graber, E.R.: Hydration of natural organic matter: effect on sorption of organic compounds by natural organic matter fractions vs. natural organic matter source material. Environ. Sci. Technol. 38, 4120–4129 (2004)

    Article  CAS  Google Scholar 

  • Borisover, M.D., Reddy, M., Graber, E.R.: Solvation effect on organic compound interactions in soil organic matter. Environ. Sci. Technol. 35, 2518–2524 (2001)

    Article  CAS  Google Scholar 

  • Borisover, M., Sela, M., Chefetz, B.: Enhancement effect of water associated with natural organic matter (NOM) on organic compound–NOM interactions: a case study with carbamazepine. Chemosphere 82, 1454–1460 (2011)

    Article  CAS  Google Scholar 

  • Brusseau, M.L., Rao, P.S.C.: Sorption nonideality during organic contaminant transport in porous media. Crit. Rev. Environ. Control 19, 33–99 (1989)

    Article  CAS  Google Scholar 

  • Cantor, C.R., Schimmel, P.R.: Biophysical Chemistry. Part III: The Behavior of Biological Macromolecules. Freeman, San Francisco (1980). Chap. 15

    Google Scholar 

  • Cernik, M., Borcovec, M., Westall, J.C.: Affinity distribution description of competitive ion binding to heterogeneous materials. Langmuir 12, 6127–6137 (1996)

    Article  CAS  Google Scholar 

  • Chiou, C.T., Shoup, T.D.: Soil sorption of organic vapors and effects of humidity on sorptive mechanisms and capacity. Environ. Sci. Technol. 19, 1196–1200 (1985)

    Article  CAS  Google Scholar 

  • Chiou, C.T., Peters, L.J., Freed, V.H.: A physical concept of soil-water equilibria for nonionic organic compounds. Science 206, 831–832 (1979)

    Article  CAS  Google Scholar 

  • Goss, K.-U.: Effects of temperature and relative humidity on the sorption of organic vapors on quartz sand. Environ. Sci. Technol. 26, 2287–2294 (1992)

    Article  CAS  Google Scholar 

  • Goss, K.-U.: Effects of temperature and relative humidity on the sorption of organic vapors on clay minerals. Environ. Sci. Technol. 27, 2127–2132 (1993)

    Article  CAS  Google Scholar 

  • Goss, K.-U., Eisenreich, S.J.: Adsorption of VOCs from the gas phase to different minerals and a mineral mixture. Environ. Sci. Technol. 30, 2135–2142 (1996)

    Article  CAS  Google Scholar 

  • Goss, K.-U., Schwarzenbach, R.P.: Adsorption of diverse set of organic vapors on quartz, CaCO3, and α-Al2O3 at different relative humidities. J. Colloid Sci. 252, 31–41 (2002)

    Article  CAS  Google Scholar 

  • Goss, K.-U., Buschmann, J., Schwarzenbach, R.P.: Determination of the surface sorption properties of talc, different salts, and clay minerals at various relative humidities using adsorption data of a diverse set of organic vapors. Environ. Toxicol. Chem. 22, 2667–2672 (2003)

    Article  CAS  Google Scholar 

  • Graber, E.R., Borisover, M.D.: Hydration-assisted sorption of specifically interacting organic compounds by model soil organic matter. Environ. Sci. Technol. 32, 258–263 (1998)

    Article  CAS  Google Scholar 

  • Graber, E.R., Tsechansky, L., Borisover, M.: Hydration-assisted sorption of a probe organic compound at different peat hydration levels: the link solvation model. Environ. Sci. Technol. 41, 547–554 (2007)

    Article  CAS  Google Scholar 

  • Hayes, M.H.B., Mingelgrin, U.: Interactions between small organic chemicals and soil colloidal constituents. In: Bolt, G.H., et al. (eds.) Interactions at the Soil Colloid-Soil Solution Interface, p. 352. Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  • Kinniburgh, D.G., van Riemsdijk, W.H., Koopal, L.K., Borcovec, M., Benedetti, M.F., Avena, M.J.: Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids Surf. A, Physicochem. Eng. Asp. 151, 147–166 (1999)

    Article  CAS  Google Scholar 

  • Niederer, C., Goss, K.-U., Schwarzenbach, R.P.: Sorption equilibrium of a wide spectrum of organic vapors in leonardite humic acid: experimental setup and experimental data. Environ. Sci. Technol. 40, 5368–5373 (2006a)

    Article  CAS  Google Scholar 

  • Niederer, C., Goss, K.-U., Schwarzenbach, R.P.: Sorption equilibrium of a wide spectrum of organic vapors in leonardite humic acid: modeling of experimental data. Environ. Sci. Technol. 40, 5374–5379 (2006b)

    Article  CAS  Google Scholar 

  • Ong, S.K., Lion, W.: Trichloroethylene vapor sorption onto soil minerals. Soil Sci. Soc. Am. J. 55, 1559–1568 (1991)

    Article  CAS  Google Scholar 

  • Pennell, K.D., Rhue, R.D., Rao, P.S.C., Johnston, C.T.: Vapor phase sorption of para-xylene and water on soils and clay minerals. Environ. Sci. Technol. 26, 756–763 (1992)

    Article  CAS  Google Scholar 

  • Pignatello, J.J.: The measurement and interpretation of sorption and desorption rates for organic compounds in soil media. Adv. Agron. 69, 1–71 (2000)

    Article  CAS  Google Scholar 

  • Pool, C.F.: The Essence of Chromatography, pp. 15–18. Elsevier, Amsterdam (2003)

    Google Scholar 

  • Rhue, R.D., Pennell, K.D., Rao, P.S.C., Reve, W.H.: Competitive adsorption of alkylbenzene and water vapors on predominantly mineral surfaces. Chemosphere 18, 1971–1986 (1989)

    Article  CAS  Google Scholar 

  • Rudzinski, W., Nieszporek, K., Moon, H., Rhee, H.-K.: On the theoretical origin and applicability of the potential theory approach to predict mixed-gas adsorption on solid surfaces from single-gas adsorption isotherms. Chem. Eng. Sci. 50, 2641–2660 (1995)

    Article  CAS  Google Scholar 

  • Rusch, U., Borcovec, M., Daicic, J., van Riemsdijk, W.H.: Interpretation of competitive adsorption isotherms in terms of affinity distributions. J. Colloid Interface Sci. 191, 247–255 (1997)

    Article  CAS  Google Scholar 

  • Taraniuk, I., Rudich, Y., Graber, E.R.: Hydration-influenced sorption of organic compounds by model and atmospheric humic-like substances (HULIS). Environ. Sci. Technol. 43, 1811–1817 (2009)

    Article  CAS  Google Scholar 

  • Thoms, S.R., Lion, W.: Vapor phase partitioning of volatile organic compounds—a regression approach. Environ. Toxicol. Chem. 11, 1377–1388 (1992)

    Article  CAS  Google Scholar 

  • Unger, D.R., Lam, T.T., Schaeffer, C.E., Kosson, D.S.: Predicting the effect of moisture on vapor-phase sorption of volatile organic compounds by soils. Environ. Sci. Technol. 30, 1081–1091 (1996)

    Article  CAS  Google Scholar 

  • Yaron, B., Saltzman, S.: Influence of water and temperature on adsorption of parathion by soils. Proc., Soil Sci. Soc. Am. 36, 583–586 (1972)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Comments of Dr. Kai-Uwe Goss of the Helmholtz Centre for Environmental Research GmbH, UFZ Department of Analytical Environmental Chemistry and of two reviewers are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Borisover.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisover, M. The effect of organic sorbates on water associated with environmentally important sorbents: estimating and the LFER analysis. Adsorption 19, 241–250 (2013). https://doi.org/10.1007/s10450-012-9446-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-012-9446-7

Keywords

Navigation