Skip to main content

Advertisement

Log in

Roles of the Fibrous Superficial Zone in the Mechanical Behavior of TMJ Condylar Cartilage

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In temporomandibular joints (TMJs), the cartilage on the condylar head displays a unique ultrastructure with a dense layer of type I collagen in the superficial zone, different from hyaline cartilage in other joints. This study aims to elucidate the roles of this fibrous zone in the mechanical behaviors, particularly lubrication, of TMJ under physiological loading regimes. Mechanical tests on porcine condylar cartilage demonstrated that the superficial and middle-deep zones exhibit tension–compression nonlinearity. The tensile and compressive moduli of the superficial zone are 30.73 ± 12.97 and 0.028 ± 0.016 MPa, respectively, while those for the middle-deep zone are 2.43 ± 1.75 and 0.14 ± 0.09 MPa. A nonlinear finite element model of condylar cartilage was built to simulate sliding of a spherical probe over the articular surface. The presence of the superficial zone significantly promoted interstitial fluid pressurization (IFP) inside the loaded cartilage and reduced the friction force on the surface, compared to the case without the superficial zone. Finite element simulations showed that IFP depends on sliding speed but not normal load, which matches the experimental results. This study revealed the presence of the fibrous zone can significantly reduce the deformation of condylar cartilage under compression and the friction force on its surface during sliding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Akizuki, S., et al. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J. Orthop. Res. 4(4):379–392, 1986.

    Article  CAS  PubMed  Google Scholar 

  2. Ateshian, G. A. The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42(9):1163–1176, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Ateshian, G. A., S. Maas, and J. A. Weiss. Finite element algorithm for frictionless contact of porous permeable media under finite deformation and sliding. J. Biomech. Eng. 132(6):061006, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Ateshian, G. A., et al. Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J. Biomech. Eng. 131(6):061003, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bermejo, A., O. Gonzalez, and J. M. Gonzalez. The pig as an animal model for experimentation on the temporomandibular articular complex. Oral Surg. Oral Med. Oral Pathol. 75(1):18–23, 1993.

    Article  CAS  PubMed  Google Scholar 

  6. Bonnevie, E. D., et al. In-situ studies of cartilage microtribology: roles of speed and contact area. Tribol. Lett. 41(1):83–95, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Bonnevie, E. D., et al. Fluid load support during localized indentation of cartilage with a spherical probe. J. Biomech. 45(6):1036–1041, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Burris, D. L., and W. G. Sawyer. Addressing practical challenges of low friction coefficient measurements. Tribol. Lett. 35(1):17–23, 2009.

    Article  Google Scholar 

  9. Caligaris, M., and G. A. Ateshian. Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction. Osteoarthr. Cartil. 16(10):1220–1227, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Detamore, M. S., and K. A. Athanasiou. Tensile properties of the porcine temporomandibular joint disc. J. Biomech. Eng. 125(4):558–565, 2003.

    Article  PubMed  Google Scholar 

  11. Dowson, D., V. Wright, and M. D. Longfield. Human joint lubrication. Biomed. Eng. 4(4):160–165, 1969.

    CAS  PubMed  Google Scholar 

  12. Forster, H., and J. Fisher. The influence of loading time and lubricant on the friction of articular cartilage. Proc. Inst. Mech. Eng. H 210(2):109–119, 1996.

    Article  CAS  PubMed  Google Scholar 

  13. Gallo, L. M., et al. Stress-field translation in the healthy human temporomandibular joint. J. Dent. Res. 79(10):1740–1746, 2000.

    Article  CAS  PubMed  Google Scholar 

  14. Gleghorn, J. P., and L. J. Bonassar. Lubrication mode analysis of articular cartilage using Stribeck surfaces. J. Biomech. 41(9):1910–1918, 2008.

    Article  PubMed  Google Scholar 

  15. Gleghorn, J. P., et al. Alteration of articular cartilage frictional properties by transforming growth factor beta, interleukin-1beta, and oncostatin M. Arthritis Rheum. 60(2):440–449, 2009.

    Article  CAS  PubMed  Google Scholar 

  16. Gleghorn, J. P., et al. Boundary mode lubrication of articular cartilage by recombinant human lubricin. J. Orthop. Res. 27(6):771–777, 2009.

    Article  CAS  PubMed  Google Scholar 

  17. Holmes, M. H., and V. C. Mow. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23(11):1145–1156, 1990.

    Article  CAS  PubMed  Google Scholar 

  18. Huang, C. Y., et al. Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation. J. Biomech. 38(4):799–809, 2005.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Ingawale, S., and T. Goswami. Temporomandibular joint: disorders, treatments, and biomechanics. Ann. Biomed. Eng. 37(5):976–996, 2009.

    Article  PubMed  Google Scholar 

  20. Katta, J., et al. Biotribology of articular cartilage—a review of the recent advances. Med. Eng. Phys. 30(10):1349–1363, 2008.

    Article  PubMed  Google Scholar 

  21. Krishnan, R., M. Kopacz, and G. A. Ateshian. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J. Orthop. Res. 22(3):565–570, 2004.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Krishnan, R., et al. Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress. J. Biomech. Eng. 125(5):569–577, 2003.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Lewis, P. R., and C. W. McCutchen. Experimental evidence for weeping lubrication in mammalian joints. Nature 184:1285, 1959.

    Article  CAS  PubMed  Google Scholar 

  24. Lu, X. L., V. C. Mow, and X. E. Guo. Proteoglycans and mechanical behavior of condylar cartilage. J. Dent. Res. 88(3):244–248, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lu, X. L., et al. Indentation determined mechanoelectrochemical properties and fixed charge density of articular cartilage. Ann. Biomed. Eng. 32(3):370–379, 2004.

    Article  PubMed  Google Scholar 

  26. Maas, S. A., et al. FEBio: finite elements for biomechanics. J. Biomech. Eng. 134(1):011005, 2012.

    Article  PubMed  Google Scholar 

  27. Moore, A. C., and D. L. Burris. An analytical model to predict interstitial lubrication of cartilage in migrating contact areas. J. Biomech. 47(1):148–153, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Mow, V. C., W. Y. Gu, and F. H. Chen. Structure and function of articular cartilage and meniscus. In: Basic Orthopaedic Biomechanics and Mechano-Biology, edited by V. C. Mow, and R. Huiskes. Philadelphia: Lippincott Williams & Wilkins, 2005, pp. 181–258.

    Google Scholar 

  29. Mow, V. C., et al. Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study. J. Biomech. 22(8–9):853–861, 1989.

    Article  CAS  PubMed  Google Scholar 

  30. Murphy, M. K., et al. Temporomandibular disorders: a review of etiology, clinical management, and tissue engineering strategies. Int. J. Oral Maxillofac. Implants 28(6):e393–e414, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Nickel, J. C., et al. Tractional forces on porcine temporomandibular joint discs. J. Dent. Res. 88(8):736–740, 2009.

    Article  CAS  PubMed  Google Scholar 

  32. Park, S., et al. Cartilage interstitial fluid load support in unconfined compression. J. Biomech. 36(12):1785–1796, 2003.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Pawaskar, S. S., J. Fisher, and Z. Jin. Robust and general method for determining surface fluid flow boundary conditions in articular cartilage contact mechanics modeling. J. Biomech. Eng. 132(3):031001, 2010.

    Article  PubMed  Google Scholar 

  34. Ranstam, J. Repeated measurements, bilateral observations and pseudoreplicates, why does it matter? Osteoarthr. Cartil. 20(6):473–475, 2012.

    Article  CAS  PubMed  Google Scholar 

  35. Schinagl, R. M., et al. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J. Orthop. Res. 15(4):499–506, 1997.

    Article  CAS  PubMed  Google Scholar 

  36. Singh, M., and M. S. Detamore. Tensile properties of the mandibular condylar cartilage. J. Biomech. Eng. 130(1):011009, 2008.

    Article  CAS  PubMed  Google Scholar 

  37. Singh, M., and M. S. Detamore. Biomechanical properties of the mandibular condylar cartilage and their relevance to the TMJ disc. J. Biomech. 42(4):405–417, 2009.

    Article  CAS  PubMed  Google Scholar 

  38. Soltz, M. A., and G. A. Ateshian. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J. Biomech. 31(10):927–934, 1998.

    Article  CAS  PubMed  Google Scholar 

  39. Soltz, M. A., and G. A. Ateshian. A conewise linear elasticity mixture model for the analysis of tension–compression nonlinearity in articular cartilage. J. Biomech. Eng. 122(6):576–586, 2000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Spilker, R. L., J. C. Nickel, and L. R. Iwasaki. A biphasic finite element model of in vitro plowing tests of the temporomandibular joint disc. Ann. Biomed. Eng. 37(6):1152–1164, 2009.

    Article  CAS  PubMed  Google Scholar 

  41. Szczesny, S. E., et al. Biaxial tensile testing and constitutive modeling of human supraspinatus tendon. J. Biomech. Eng. 134(2):021004, 2012.

    Article  PubMed  Google Scholar 

  42. Tanaka, E., et al. The frictional coefficient of the temporomandibular joint and its dependency on the magnitude and duration of joint loading. J. Dent. Res. 83(5):404–407, 2004.

    Article  CAS  PubMed  Google Scholar 

  43. Tanaka, E., et al. The effect of removal of the disc on the friction in the temporomandibular joint. J. Oral Maxillofac. Surg. 64(8):1221–1224, 2006.

    Article  PubMed  Google Scholar 

  44. Tanaka, E., et al. Lubrication of the temporomandibular joint. Ann. Biomed. Eng. 36(1):14–29, 2008.

    Article  PubMed  Google Scholar 

  45. Walker, P. S., et al. “Boosted lubrication” in synovial joints by fluid entrapment and enrichment. Ann. Rheum. Dis. 27(6):512–520, 1968.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Williamson, A. K., et al. Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J. Orthop. Res. 21(5):872–880, 2003.

    Article  CAS  PubMed  Google Scholar 

  47. Yin, L., and D. M. Elliott. A biphasic and transversely isotropic mechanical model for tendon: application to mouse tail fascicles in uniaxial tension. J. Biomech. 37(6):907–916, 2004.

    Article  PubMed  Google Scholar 

  48. Zimmerman, B. K., et al. Role of interstitial fluid pressurization in TMJ lubrication. J. Dent. Res. 94(1):85–92, 2015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Dawn Elliott for assistance in the measurement of tissue cross-sectional area and Dr. Gerard Ateshian for assistance with FEBio modeling.

Conflict of interest

All authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Lucas Lu.

Additional information

Associate Editor Eric M. Darling oversaw the review of this article.

Leonardo Ruggiero and Brandon K. Zimmerman have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggiero, L., Zimmerman, B.K., Park, M. et al. Roles of the Fibrous Superficial Zone in the Mechanical Behavior of TMJ Condylar Cartilage. Ann Biomed Eng 43, 2652–2662 (2015). https://doi.org/10.1007/s10439-015-1320-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1320-9

Keywords

Navigation