Skip to main content
Log in

Influence of Spreading and Contractility on Cell Detachment

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cell adhesion is a key phenomenon that affects fundamental cellular processes such as morphology, migration, and differentiation. In the current study, an active modelling framework incorporating actin cytoskeleton remodelling and contractility, combined with a cohesive zone model to simulate debonding at the cell–substrate interface, is implemented to investigate the increased resistance to detachment of highly spread chondrocytes from a substrate, as observed experimentally by Huang et al. (J. Orthop. Res. 21: 88–95, 2003). 3D finite element meshes of the round and spread cell geometries with the same material properties are created. It is demonstrated that spread cells with a flattened morphology and a larger adhesion area have a more highly developed actin cytoskeleton than rounded cells. Rounded cells provide less support for tension generated by the actin cytoskeleton; hence, a high level of dissociation is predicted. It is revealed that the more highly developed active contractile actin cytoskeleton of the spread cell increases the resistance to shear deformation, and subsequently increases the shear detachment force. These findings provide new insight into the link between cell geometry, cell contractility, and cell–substrate detachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Brown, P. D., and P. D. Benya. Alterations in chondrocyte cytoskeletal architecture during phenotypic modulation by retinoic acid and dihydrocytochalasin B-induced reexpression. J. Cell Biol. 106:171–179, 1988.

    Article  PubMed  CAS  Google Scholar 

  2. Buckwalter, J., and H. Mankin. Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr. Course Lect. 47:487, 1998.

    PubMed  CAS  Google Scholar 

  3. Caille, N., O. Thoumine, Y. Tardy, and J.-. J. Meister. Contribution of the nucleus to the mechanical properties of endothelial cells. J. Biomech. 35:177–187, 2002.

    Article  PubMed  Google Scholar 

  4. Chen, C. S., J. L. Alonso, E. Ostuni, G. M. Whitesides, and D. E. Ingber. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307:355–361, 2003.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, J., J. Irianto, S. Inamdar, P. Pravincumar, D. A. Lee, D. L. Bader, and M. M. Knight. Cell mechanics, structure, and function are regulated by the stiffness of the three-dimensional microenvironment. Biophys. J. 103:1188–1197, 2012.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Cheng, Q., P. Liu, H. Gao, and Y. Zhang. A computational modeling for micropipette-manipulated cell detachment from a substrate mediated by receptor–ligand binding. J. Mech. Phys. Solids 57:205–220, 2009.

    Article  CAS  Google Scholar 

  7. Chrzanowska-Wodnicka, M., and K. Burridge. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133:1403–1415, 1996.

    Article  PubMed  CAS  Google Scholar 

  8. Darling, E. M., and K. A. Athanasiou. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res. 23:425–432, 2005.

    Article  PubMed  CAS  Google Scholar 

  9. Deshpande, V. S., R. M. McMeeking, and A. G. Evans. A bio–chemo–mechanical model for cell contractility. Proc. Natl. Acad. Sci. 103:14015–14020, 2006.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Deshpande, V. S., M. Mrksich, R. M. McMeeking, and A. G. Evans. A bio–mechanical model for coupling cell contractility with focal adhesion formation. J. Mech. Phys. Solids 56:1484–1510, 2008.

    Article  CAS  Google Scholar 

  11. Dowling, E. P., W. Ronan, and J. P. McGarry. Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading. Acta Biomater. 9:5943–5955, 2012.

    Article  PubMed  CAS  Google Scholar 

  12. Dowling, E. P., W. Ronan, G. Ofek, V. Deshpande, R. M. McMeeking, K. A. Athanasiou, and J. P. McGarry. The effect of remodelling and contractility of the actin cytoskeleton on the shear resistance of single cells: a computational and experimental investigation. J. R. Soc. Interface 9:3469–3479, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Engler, A., L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86:617–628, 2004.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Frenkel, S. R., R. M. Clancy, J. L. Ricci, P. E. Di Cesare, J. J. Rediske, and S. B. Abramson. Effects of nitric oxide on chondrocyte migration, adhesion, and cytoskeletal assembly. Arthritis Rheum. 39:1905–1912, 1996.

    Article  PubMed  CAS  Google Scholar 

  15. Genes, N. G., J. A. Rowley, D. J. Mooney, and L. J. Bonassar. Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Arch. Biochem. Biophys. 422:161–167, 2004.

    Article  PubMed  CAS  Google Scholar 

  16. Haudenschild, D. R., J. Chen, N. Steklov, M. K. Lotz, and D. D. D’Lima. Characterization of the chondrocyte actin cytoskeleton in living three-dimensional culture: response to anabolic and catabolic stimuli. Mol. Cell. Biomech. 6:135–144, 2009.

    PubMed Central  PubMed  Google Scholar 

  17. Huang, W., A. J. H. Bahman, R. Torres, G. Lebaron, and K. A. Athanasiou. Temporal effects of cell adhesion on mechanical characteristics of the single chondrocyte. J. Orthop. Res. 21:88–95, 2003.

    Article  PubMed  Google Scholar 

  18. Idowu, B. D., M. M. Knight, D. L. Bader, and D. A. Lee. Confocal analysis of cytoskeletal organisation within isolated chondrocyte sub-populations cultured in agarose. Histochem. J. 32:165–174, 2000.

    Article  PubMed  CAS  Google Scholar 

  19. Ishaug-Riley, S. L., L. E. Okun, G. Prado, M. A. Applegate, and A. Ratcliffe. Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials 20:2245–2256, 1999.

    Article  PubMed  CAS  Google Scholar 

  20. Jean, R. P., C. S. Chen, and A. A. Spector. Finite-element analysis of the adhesion–cytoskeleton–nucleus mechanotransduction pathway during endothelial cell rounding: axisymmetric model. J. Biomech. Eng. 127:594–600, 2005.

    Article  PubMed  Google Scholar 

  21. Knight, M. M., B. D. Idowu, D. A. Lee, and D. L. Bader. Temporal changes in cytoskeletal organisation within isolated chondrocytes quantified using a novel image analysis technique. Med. Biol. Eng. Comput. 39:397–404, 2001.

    Article  PubMed  CAS  Google Scholar 

  22. Knight, M. M., T. Toyoda, D. A. Lee, and D. L. Bader. Mechanical compression and hydrostatic pressure induce reversible changes in actin cytoskeletal organisation in chondrocytes in agarose. J. Biomech. 39:1547–1551, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Kurtis, M. S., B. P. Tu, O. A. Gaya, J. Mollenhauer, W. Knudson, R. F. Loeser, C. B. Knudson, and R. L. Sah. Mechanisms of chondrocyte adhesion to cartilage: role of β1-integrins, CD44, and annexin V. J. Orthop. Res. 19:1122–1130, 2006.

    Article  Google Scholar 

  24. Leckband, D., and J. Israelachvili. Intermolecular forces in biology. Q. Rev. Biophys. 34:105–267, 2001.

    Article  PubMed  CAS  Google Scholar 

  25. Li, W. J., Y. J. Jiang, and R. S. Tuan. Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng. Part A 12:1775–1785, 2006.

    Article  CAS  Google Scholar 

  26. Lyman, J. R., J. D. Chappell, T. I. Morales, S. S. Kelley, and G. M. Lee. Response of chondrocytes to local mechanical injury in an ex vivo model. Cartilage 3:58–69, 2012.

    Article  CAS  Google Scholar 

  27. Máirtín, É. Ó., G. Parry, G. E. Beltz, and J. P. McGarry. Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure—part II: finite element applications. J. Mech. Phys. Solids, 2013.

  28. Mallein-Gerin, F., R. Garrone, and M. Van der Rest. Proteoglycan and collagen synthesis are correlated with actin organization in dedifferentiating chondrocytes. Eur. J. Cell Biol. 56:364–373, 1991.

    PubMed  CAS  Google Scholar 

  29. McGarry, J. P. Characterization of cell mechanical properties by computational modeling of parallel plate compression. Ann. Biomed. Eng. 37:2317–2325, 2009.

    Article  PubMed  CAS  Google Scholar 

  30. McGarry, J. P., É. Ó Máirtín, G. Parry, and G. E. Beltz. Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part I: Theoretical analysis. J. Mech. Phys. Solids, 2013.

  31. McGarry, J. P., J. Fu, M. T. Yang, C. S. Chen, R. M. McMeeking, A. G. Evans, and V. S. Deshpande. Simulation of the contractile response of cells on an array of micro-posts. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367:3477–3497, 2009.

    Article  CAS  Google Scholar 

  32. McGarry, J. P., and P. E. McHugh. Modelling of in vitro chondrocyte detachment. J. Mech. Phys. Solids 56:1554–1565, 2008.

    Article  Google Scholar 

  33. McGarry, J. P., B. P. Murphy, and P. E. McHugh. Computational mechanics modelling of cell–substrate contact during cyclic substrate deformation. J. Mech. Phys. Solids 53:2597–2637, 2005.

    Article  Google Scholar 

  34. McGarry, J., and P. Prendergast. A three-dimensional finite element model of an adherent eukaryotic cell. Eur. Cell. Mater. 7:27–33, 2004.

    PubMed  CAS  Google Scholar 

  35. Ofek, G., E. P. Dowling, R. M. Raphael, J. P. McGarry, and K. A. Athanasiou. Biomechanics of single chondrocytes under direct shear. Biomech. Model. Mechanobiol. 9:153–162, 2009.

    Article  PubMed  Google Scholar 

  36. Parker, K. K., A. L. Brock, C. Brangwynne, R. J. Mannix, N. Wang, E. Ostuni, N. A. Geisse, J. C. Adams, G. M. Whitesides, and D. E. Ingber. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J. 16:1195–1204, 2002.

    Article  PubMed  CAS  Google Scholar 

  37. Pathak, A., V. S. Deshpande, R. M. McMeeking, and A. G. Evans. The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J. R. Soc. Interface 5:507–524, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Riveline, D., E. Zamir, N. Q. Balaban, U. S. Schwarz, T. Ishizaki, S. Narumiya, Z. Kam, B. Geiger, and A. D. Bershadsky. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153:1175–1186, 2001.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Rodriguez, M. L., J. P. McGarry, and N. J. Sniadecki. Review on cell mechanics: experimental and modeling approaches. Appl. Mech. Rev. 65, 2013.

  40. Ronan, W., V. Deshpande, R. M. McMeeking, and J. P. McGarry. Numerical investigation of the active role of the cytoskeleton in the compression resistance of cells. J. Mech. Behav. Biomed. Mater. 14:143–157, 2012.

    Article  PubMed  CAS  Google Scholar 

  41. Ronan, W., V. Deshpande, R. M. McMeeking, and J. P. McGarry. Cellular contractility and substrate elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion. Biomech. Model. Mechanobiol. 2013. doi:10.1007/s10237-013-0506-z.

    PubMed  Google Scholar 

  42. Ronan, W., P. McGarry, A. Pathak, V. Deshpande, and R. McMeeking. Simulation of the mechanical response of cells on micro-post substrates. J. Biomech. Eng. 135, 2013.

  43. Schinagl, R. M., M. S. Kurtis, K. D. Ellis, S. Chien, and R. L. Sah. Effect of seeding duration on the strength of chondrocyte adhesion to articular cartilage. J. Orthop. Res. 17:121–129, 1999.

    Article  PubMed  CAS  Google Scholar 

  44. Tan, J. L., J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl. Acad. Sci. 100:1484–1489, 2003.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Thoumine, O., O. Cardoso, and J. J. Meister. Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study. Eur. Biophys. J. 28:222–234, 1999.

    Article  PubMed  CAS  Google Scholar 

  46. Weafer, P., W. Ronan, S. Jarvis, and J. McGarry. Experimental and computational investigation of the role of stress fiber contractility in the resistance of osteoblasts to compression. Bull. Math. Biol. 75:1284–1303, 2013.

    Article  PubMed  CAS  Google Scholar 

  47. Woods, A., G. Wang, and F. Beier. RhoA/ROCK signaling regulates Sox9 expression and actin organization during chondrogenesis. J. Biol. Chem. 280:11626–11634, 2005.

    Article  PubMed  CAS  Google Scholar 

  48. Yamamoto, A., S. Mishima, N. Maruyama, and M. Sumita. Quantitative evaluation of cell attachment to glass, polystyrene, and fibronectin-or collagen-coated polystyrene by measurement of cell adhesive shear force and cell detachment energy. J. Biomed. Mater. Res. Part A 50:114–124, 2000.

    Article  CAS  Google Scholar 

  49. Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60:24–34, 2005.

    Article  Google Scholar 

Download references

Acknowledgments

Funding support was provided by the Irish Research Council for Science, Engineering and Technology (IRCSET) postgraduate scholarship under the EMBARK initiative, and by the Science Foundation Ireland Research Frontiers Programme (SFI-RFP/ENM1726). The authors wish to acknowledge the SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support. The authors would like to thank Prof. K.A. Athanasiou, Prof. V.S. Deshpande, Prof. R.M. McMeeking, and Dr. W. Ronan for helpful discussions and insights relating to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Patrick McGarry.

Additional information

Associate Editor Eric M. Darling oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 481 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dowling, E.P., McGarry, J.P. Influence of Spreading and Contractility on Cell Detachment. Ann Biomed Eng 42, 1037–1048 (2014). https://doi.org/10.1007/s10439-013-0965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0965-5

Keywords

Navigation