Skip to main content
Log in

Credit risk and contagion via self-exciting default intensity

  • Research Article
  • Published:
Annals of Finance Aims and scope Submit manuscript

Abstract

Recent empirical evidences indicate that default rates are influenced not only by the observable or latent risk factors, but also depend on the history of past defaults. Motivated by this empirical finding, we consider in this paper a reduced-form, intensity-based credit risk model, which allows for both frailty and default contagion, using a so-called “self-exciting” intensity, in the sense that the default intensity varies not only with the risk factors, but also depends on the previous default history of all the firms. With “self-exciting” default intensity, we are able to obtain closed-form expressions for the pricing of credit derivative securities in our model. The estimation of parameters using the EM algorithm is considered as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In Azizpour et al. (2014), an observable factor is also included in the model to represent the macro-economic risk factor. Our model and filtering-based approach can be easily extended to allow for observable risk factors, as observable factors will not change the filtering equations essentially. For simplicity, we only model the latent frailty and contagion effects through the hidden, unobservable Markov state process, as our main focus is to filter out the current state with the “self-exciting” default intensity, which is a novel contribution. We also obtain the robust filter with the “self-exciting” default intensity.

  2. In Azizpour et al. (2014), the frailty factor is modeled as a mean-reverting CIR square-root diffusion process.

  3. In Giesecke and Schwenkler (2014), the authors consider a filtered likelihood estimate of parameters for marked point processes. Using numerical analysis, they compare estimates obtained with their approach and with the EM algorithm, and find that for the majority of the parameters, their estimates are more accurate and less susceptible to the initial values.

  4. For \(\lambda ^i_t\) of the special form \(\lambda ^i(t,X_{t-},N_{(\cdot )})=\phi \left( \int _{-\infty }^th(t-s,X_{t-})dN_s\right) \), appropriate conditions for integrability are given by researchers. A key example of interest is when \(\lambda ^i(t,X_{t-},N_{(\cdot )})=\langle \alpha ,X_{t-}\rangle +\langle \beta ,X_{t-}\rangle \int _0^t e^{-\langle \gamma ,X_{t-}\rangle (t-s)}dY^i_s\), where \(Y^i_t=\sum _{j\ne i}N^i_t=\sum _{j\ne i}{\mathbf {1}}_{\{t\ge \tau _i\}}\), and \(\alpha ,\beta ,\gamma \) are vectors of parameters to be determined. This is a variant of the Hawkes’ process.

  5. For example, a variant of the Hawkes’ process is \(\lambda ^i(t,X_{t-},N_{(\cdot )})=\langle \alpha ,X_{t-}\rangle +\langle \beta ,X_{t-}\rangle \int _0^t e^{-\langle \gamma ,X_{t-}\rangle (t-s)}dY^i_s\), where \(Y^i_t=\sum _{j\ne i}N^i_t=\sum _{j\ne i}{\mathbf {1}}_{\{t\ge \tau _i\}}\), and \(\alpha ,\beta ,\gamma \) are vectors of parameters to be determined. This is a parametric specification where \(\lambda ^i(t,X_{t-},N_{(\cdot )})\) is self-exciting, and not depending on \(N^i_{[0,t-]}\).

References

  • Azizpour, S., Giesecke, K., Schwenkler, G.: Exploring the Sources of Default Clustering. Working paper, Stanford University (2014)

  • Bielecki, T.R., Rutkowski, M.: Credit Risk: Modeling, Valuation and Hedging. Springer, Berlin (2002)

    Google Scholar 

  • Black, F., Cox, J.C.: Valuing corporate securities: some effects of bond indenture provisions. J. Finance 31(2), 351–367 (1976)

  • Collin-Dufresne, P., Goldstein, R., Helwege, J.: Is Credit Event Risk Priced? Modeling Contagion Via the Updating of Beliefs. Preprint, Carnegie Mellon University (2003)

  • Cvitanić, J., Ma, J., Zhang, J.: Laws of large numbers for self-inciting correlated defaults. Stoch Process Appl 122, 2781–2810 (2011)

    Article  Google Scholar 

  • Das, S.R., Duffie, D., Kapadia, N., Saita, L.: Common failings: how corporate defaults are correlated. J. Finance 62(1), 93–117 (2007)

  • Duffie, D., Lando, D.: Term structure of credit spreads with incomplete accounting information. Econometrica 69, 633–664 (2001)

    Article  Google Scholar 

  • Duffie, D., Singleton, K.: An econometric model of the term structure of interest-rate swap yields. J Financ 52(4), 1287–1321 (1997)

    Article  Google Scholar 

  • Duffie, D., Singleton, K.: Modeling term structures of defaultable bonds. Rev Financ Stud 12, 687–720 (1999)

    Article  Google Scholar 

  • Duffie, D., Singleton, K.: Credit Risk: Pricing, Measurement and Management. Princeton University Press, Princeton (2003)

    Google Scholar 

  • Duffie, D., Eckner, A., Horel, G., Saita, L.: Frailty correlated default. J Financ 64, 2089–2123 (2009)

    Article  Google Scholar 

  • Elliott, R.J., Aggoun, L., Moore, J.B.: Hidden Markov models: Estimation and control. Applications of Mathematics (New York), 29, Springer, New York, xii+361 pp (1995)

  • Frey, R., Runggaldier, W.: Pricing credit derivatives under incomplete information: a nonlinear filtering approach. Financ Stochast 14, 495–526 (2010)

    Article  Google Scholar 

  • Frey, R., Schmidt, T.: Pricing and hedging of credit derivatives via the innovations approach to nonlinear filtering. Financ Stochast 16, 105–133 (2012)

    Article  Google Scholar 

  • Giesecke, K., Longstaff, F., Schaefer, S., Strebulaev, I.: Corporate bond default risk: a 150-year perspective. J Financ Econ 102, 233–250 (2011)

    Article  Google Scholar 

  • Giesecke, K., Longstaff, F., Schaefer, S., Strebulaev, I.: Macroeconomic effects of corporate default crises: a long-term perspective. J Financ Econ 111, 297–310 (2014)

    Article  Google Scholar 

  • Giesecke, K., Schwenkler, G.: Filtered likelihood for point processes. Working paper. Stanford University (2014)

  • Giesecke, K., Spiliopoulos, K., Sowers, R.: Default clustering in large portfolios: typical events. Ann Appl Probab 23(1), 348–385 (2013)

    Article  Google Scholar 

  • Hajek, B., Wong, E.: Stochastic Processes in Engineering Systems. Springer, Berlin (1985)

    Google Scholar 

  • Jarrow, R.A., Turnbull, S.M.: Pricing derivatives on financial securities subject to credit risk. J Financ 50, 53–86 (1995)

    Article  Google Scholar 

  • Jarrow, R.A., Lando, D., Turnbull, S.M.: A Markov model for the term structure of credit risk spreads. Rev Financ Stud 10(2), 481–523 (1997)

    Article  Google Scholar 

  • Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, Berlin (1988)

    Book  Google Scholar 

  • Merton, R.C.: On the pricing of corporate debt the risk structure of interest rates. J. Finance 29(2), 449–470 (1974)

  • Schönbucher, P.: The term structure of defaultable bond prices. Rev Deriv Res 2, 161–192 (1998)

    Google Scholar 

  • Schönbucher, P.: Information Driven Default Contagion. Working Paper, ETH, Zurich (2003a)

  • Schönbucher, P.: Credit Derivatives Pricing Models: Models, Pricing and Implementation. Wiley, Chichester (2003b)

Download references

Acknowledgments

The authors thank the anonymous referee for many comments and suggestions, which are very helpful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Elliott.

Additional information

The first author wishes to thank SSHRC and NSERC.

Appendices

Appendix 1

Proof of Theorem 1

We have

$$\begin{aligned} \varLambda _t&=1+\sum _{i=1}^N\int _0^t\varLambda ^i_{u-}\big (\lambda ^i_u-1 \big )\big (dZ^i_u-{\mathbf {1}}_{\{u\le \tau _i\}}du\big ). \end{aligned}$$

Then

$$\begin{aligned} \varLambda _tX_t&=X_0+\sum _{i=0}^N\int _0^t\varLambda _{u-}X_{u-} \big (\lambda ^i_u-1\big )\big (dZ^i_u-{\mathbf {1}}_{\{u\le \tau _i\}}du \big )\\&\quad +\int _0^t\varLambda _{u-}A_{u}X_{u}du+\int _0^t\varLambda _{u-}dM_u. \end{aligned}$$

As \(\varLambda \) has independent increments under , taking a conditional expectation,

As \(\lambda ^i\) is a scalar function of the state \(X_{u-}\), we can write

$$\begin{aligned} X_{u-}\big (\lambda ^i_u-1\big ) =\big (\lambda ^i \big (u,X_{u-},N_{(\cdot )}\big )-1\big )X_{u-} ={{\mathrm{diag}}}\big (\lambda ^{(i)}-1\big ), \end{aligned}$$

where \({{\mathrm{diag}}}(\lambda ^{(i)}-1)\) is the diagonal matrix with \((k,k)\)-entry \(\lambda ^i_{k,u}=\lambda ^i(u,e_k,N_{(\cdot )})\). This implies that \({{\mathrm{diag}}}(\lambda ^{(i)}-1)\) is \({\mathcal {F}}^Z_u\)-measurable. Substituting this in the equation for \(q\), we have

$$\begin{aligned} q_t&=q_0+\sum _{i=0}^N\int _0^t {{\mathrm{diag}}}\big (\lambda ^{(i)}-1\big )q_{u-}\big (dZ^i_u -{\mathbf {1}}_{\{u\le \tau _i\}}du\big )+\int _0^tA_uq_udu\\&=q_0+\sum _{i=0}^N\int _0^t {{\mathrm{diag}}}\big (\lambda ^{(i)}-1\big )q_{u-}dZ^i_u\\&\quad -\sum _{i=0}^N\int _0^{t\wedge \tau _i} {{\mathrm{diag}}}\big (\lambda ^{(i)}-1\big )q_{u-}du +\int _0^tA_uq_udu. \end{aligned}$$

\(\square \)

Proof of Theorem 2

The proof is similar to that of Theorem 1. We start with \(\overline{{\mathbb {P}}}\). Using Girsanov’s Theorem for jump processes, define a process \(\varLambda _t\) by

$$\begin{aligned} \varLambda _t&=\prod _{i=1}^N\exp \left( -\int _0^t\int _EX_{u-} \big (h^i_u(y)-1\big ){\mathbf {1}}_{\{u\le \tau _i\}}f(y)dudy\right. \nonumber \\&\left. \quad +\int _0^t\int _EX_{u-}\log h^i_u(y)\mu ^i(du,dy)\right) \nonumber \\&=\exp \left( -\sum _{i=1}^N\int _0^t\int _EX_{u-}\big (h^i_u(y)-1 \big ){\mathbf {1}}_{\{u\le \tau _i\}}f(y)dudy\right. \nonumber \\&\left. \quad +\sum _{i=1}^N\int _0^t\int _EX_{u-}\log h^i_u(y)\mu ^i(du,dy)\right) . \end{aligned}$$
(2)

Using Itô’s rule, we also have

$$\begin{aligned} \varLambda _t=1+\sum _{i=1}^N\int _0^t\int _E\varLambda _{u-}X_{u-} \big (h^i_u(y)-1\big )\big (\mu ^i(dy,du) -{\mathbf {1}}_{\{u\le \tau _i\}}f(y)dydu\big ), \end{aligned}$$

or

$$\begin{aligned} d(\varLambda _t)=\varLambda _{t-}\sum _{i=1}^N\int _EX_{t-} \big (h^i_u(y)-1\big )\big (\mu ^i(dy,dt) -{\mathbf {1}}_{\{u\le \tau _i\}}f(y)dydt\big ). \end{aligned}$$

Since

$$\begin{aligned} d\left( \varLambda _tX_t \right)&=d\left( \varLambda _t\right) X_t +\varLambda _td(X_t)\\&=\varLambda _{t-}\left( \sum _{i=1}^N\int _EX_{t-} \big (h^i_u(y)-1\big )\big (\mu ^i(dy,dt\big ) -{\mathbf {1}}_{\{u\le \tau _i\}}f(y)dydt)\right) X_{t-}\\&\quad +\varLambda _{t-}\left( AX_t+dM_t\right) , \end{aligned}$$

we have

$$\begin{aligned} \varLambda _tX_t&=\varLambda _0X_0+\sum _{i=1}^N\int _0^t \varLambda _{u-}X_{u-}\int _EX_{u-}\big (h^i_u(y)-1\big )\\&\quad \times \big (\mu ^i(dy,du)-{\mathbf {1}}_{\{u\le \tau _i\}}f(y)dydu\big )\\&\quad +\int _0^t\varLambda _uAX_udu+\int _0^t\varLambda _{u-}dM_u. \end{aligned}$$

Write \(q_t:=\overline{{\mathbb {E}}}[\varLambda _tX_t|{\mathcal {F}}_t^M]\). Then, a version of Bayes’ Theorem gives

$$\begin{aligned} {\mathbb {E}}\left[ X_t|{\mathcal {F}}_t^M\right] =\frac{\overline{{\mathbb {E}}} \left[ \varLambda _tX_t|{\mathcal {F}}_t^M\right] }{\overline{{\mathbb {E}}} \left[ \varLambda _t|{\mathcal {F}}_t^M\right] } =\frac{q_t}{\langle q_t, {\mathbf {1}}\rangle }. \end{aligned}$$

Conditioning on \({\mathcal {F}}_t^Z\) under \(\overline{{\mathbb {P}}}\), using the Fubini Theorem in Hajek and Wong (1985), we have

$$\begin{aligned} q_t&=q_0+\int _0^tAq_udu+\sum _{i=1}^N\int _0^t\int _E\sum _{k=1}^K\langle q_{u-},e_k\rangle \big (h^i_k(y)-1\big )\\&\quad \times \big (\mu ^i(dy,du) -{\mathbf {1}}_{\{u\le \tau _i\}}f(y)dydu\big )e_k \end{aligned}$$

Write \(H^i_k(u):=h^i_k(y_u)\). Then

$$\begin{aligned} q_t&=q_0+\int _0^tAq_udu+\sum _{i=1}^N\int _0^t\int _E\sum _{k=1}^K \langle q_{u-},e_k\rangle \big (h^i_k(y)-1\big )\\&\quad \times \big (\mu ^i(dy,du)-{\mathbf {1}}_{\{u\le \tau _i\}}f(y)dydu\big )e_k\\&=q_0+\!\int _0^tAq_udu\!+\!\sum _{i=1}^N\int _0^t\int _E{{\mathrm{diag}}}\big (h^i_1(y)-1,\ldots ,h^i_K(y)-1\big )q_{u-}\mu ^i(dy,du)\\&\quad -\sum _{i=1}^N\int _0^t\int _E{{\mathrm{diag}}}\big (h^i_1(y)-1,\ldots ,h^i_K(y)-1\big ) q_{u-}\left( {\mathbf {1}}_{\{u\le \tau _i\}}f(y)dydu\right) \\&=q_0+\int _0^tAq_udu+\sum _{i=1}^N\int _0^t{{\mathrm{diag}}}\big (H^i_1(u)-1,\ldots ,H^i_K(u)-1\big )q_{u-}\\&\quad \times \int _E\mu ^i(dy,du)-\sum _{i=1}^N\int _0^t{{\mathrm{diag}}}\big (\lambda ^i_1-1,\ldots ,\lambda ^i_K-1 \big ){\mathbf {1}}_{\{u\le \tau _i\}}q_udu\\&=q_0+\int _0^tAq_udu+\sum _{i=1}^N\int _0^t{{\mathrm{diag}}}\big (H^i_1(u)-1,\ldots ,H^i_K(u)-1\big )q_{u-}dN^i_u\\&\quad -\sum _{i=1}^N\int _0^{t\wedge \tau _i}{{\mathrm{diag}}}\big (\lambda ^i_1-1,\ldots ,\lambda ^i_K-1\big )q_udu. \end{aligned}$$

\(\square \)

Proof of Lemma 2

By Itô’s product rule,

$$\begin{aligned} d(\gamma ^{-1}_k(t))=d(\gamma ^{-1}_k(t))&=-\gamma ^{-1}_k(t-)\sum _{i=1}^N\Big (\left( 1-\lambda ^i_{k,t}\right) {\mathbf {1}}_{\{t\le \tau _i\}}dt+\log (H^i_{k,t})\varDelta N^i_t\Big )\\&\quad +\gamma ^{-1}_k(t-)\sum _{i=1}^N\left( \left( \frac{1}{H^i_{k,t}}-1\right) \varDelta N^i_t+\log (H^i_{k,t})\varDelta N^i_t\right) \\&=-\gamma ^{-1}_k(t-)\sum _{i=1}^N\Big (\left( 1-\lambda ^i_{k,t}\right) {\mathbf {1}}_{\{t\le \tau _i\}}dt+\log (H^i_{k,t})\varDelta N^i_t\Big )\\&\quad +\gamma ^{-1}_k(t-)\sum _{i=1}^N\left( \left( \frac{1-H^i_{k,t}}{H^i_{k,t}}\right) \varDelta N^i_t+\log (H^i_{k,t})\varDelta N^i_t\right) \\&=\gamma ^{-1}_k(t-)\sum _{i=1}^N\left( 1-\lambda ^i_{k,t}\right) {\mathbf {1}}_{\{t\le \tau _i\}}dt\\&\quad +\gamma ^{-1}_k(t-)\sum _{i=1}^N\left( \frac{1-H^i_{k,t}}{H^i_{k,t}}\right) dN^i_t. \end{aligned}$$

Thus

$$\begin{aligned} d\big (\varGamma ^{-1}_t\big )=\sum _{i=1}^N{\mathbf {1}}_{\{t\le \tau _i\}}{{\mathrm{diag}}}\big (\lambda ^{(i)}-1\big )\varGamma ^{-1}_tdt +\sum _{i=1}^N{{\mathrm{diag}}}\left( \frac{1-H^{(i)}}{H^{(i)}}\right) \varGamma ^{-1}_{t-}dN^i_t. \end{aligned}$$

\(\square \)

Proof of Theorem 3

By Itô’s product rule,

$$\begin{aligned} d(\bar{q}_t)&=d\left( \varGamma _t^{-1}q_t\right) \\&=\varGamma _t^{-1}d(q_t)+d\left( \varGamma _t^{-1}\right) q_t+d\left[ \varGamma ^{-1},q\right] _t\\&=\varGamma _t^{-1}\left( A_tq_tdt+\sum _{i=0}^N{{\mathrm{diag}}}(H^i_1(t)-1,\ldots ,H^i_K(t)-1)q_{t-}dN^i_t\right. \\&\left. \quad -\sum _{i=0}^N{\mathbf {1}}_{t\wedge \tau _i}{{\mathrm{diag}}}(\lambda ^{(i)}-1)q_{t-}dt\right) \\&\quad +\left( \sum _{i=1}^N{\mathbf {1}}_{\{t\le \tau _i\}}{{\mathrm{diag}}}\big (\lambda ^{(i)}-1\big )\varGamma ^{-1}_tdt +\sum _{i=1}^N{{\mathrm{diag}}}\left( \frac{1}{H^{(i)}}-1\right) \varGamma ^{-1}_{t-}dN^i_t\right) q_t\\&\quad +\sum _{i=1}^N{{\mathrm{diag}}}\left( \frac{1}{H^{(i)}}-1\right) \varGamma ^{-1}_{t-}{{\mathrm{diag}}}(H^{(i)}-1)q_{t-}dN^i_t\\&=\varGamma _t^{-1}A_tq_tdt+\sum _{i=1}^N\left( {{\mathrm{diag}}}(H^{(i)}-1)+{{\mathrm{diag}}}\left( \frac{1}{H^{(i)}}-1\right) \right. \\&\quad \left. +{{\mathrm{diag}}}\left( \frac{1}{H^{(i)}}-1\right) {{\mathrm{diag}}}(H^{(i)}-1)\right) \varGamma _t^{-1}q_{t-}dN^i_t\\&=\varGamma _t^{-1}A_tq_tdt. \end{aligned}$$

Thus

$$\begin{aligned} \bar{q}_t&=\bar{q}_0+\int _0^t\varGamma _u^{-1}A_uq_udu\\&=\bar{q}_0+\int _0^t\varGamma _u^{-1}A_u\varGamma _u\bar{q}_udu. \end{aligned}$$

\(\square \)

Appendix 2

In this appendix, we give a closed-form expression for the survival probability in our model with self-exciting intensities. We show that, if we exclude some uninteresting technical cases, a closed-form expression for the survival probability can be obtained. In our model, \(\lambda ^i(t,X_{t-},N_{(\cdot )})\) depends on \(X_{t-}\), and \(N^j_{[0,t-]}\), for all \(j\ne i\). We further assume the following, to exclude some uninteresting cases.

Assumption

\(\lambda ^i(t,X_{t-},N_{(\cdot )})\) does not depend on \(N^i_{[0,t-]}\).Footnote 5

We make this assumption as we use \(\lambda ^i(t,X_{t-},N_{(\cdot )})\) to model the contagion and frailty effects from other firms, so \(\lambda ^i(t,X_{t-},N_{(\cdot )})\) does not depend on its own default history. Also, when \(N^i_{t-}=0\), \(N^i_{[0,t-]}\) does not influence \(\lambda ^i(t,X_{t-},N_{(\cdot )})\), and once \(N^i_{\tau _i}=1\) for \(\tau _i<t\), firm \(i\) has already defaulted. Thus, it is sensible to assume that \(\lambda ^i(t,X_{t-},N_{(\cdot )})\) does not depend on \(N^i_{[0,t-]}\).

With this assumption, we now prove the survival probability. By definition of stochastic intensity (see, e.g., Duffie and Singleton 2003 p. 361; Bielecki and Rutkowski 2002 p. 155), the compensator of \(N^i_t\) is \(\int _0^{t\wedge \tau }\lambda ^i(u,X_{u-},N_{(\cdot )})du\), i.e.,

$$\begin{aligned} N^i_t-\int _0^{t\wedge \tau _i}\lambda ^i \left( u,X_{u-},N_{(\cdot )}\right) du \end{aligned}$$
(3)

is an \({\mathcal {F}}\)-martingale under measure \({\mathbb {P}}\). We need to find the survival probability \({\mathbb {P}}(\tau _i\ge t|{\mathcal {F}}_t)\).

The filtration \(\{{\mathcal {F}}^{X}_{t},t\ge 0\}\) is defined by \({\mathcal {F}}^{X}_{t}:{=}\sigma \{X_{s}:s\le t\}\). Similarly, we write \({\mathcal {F}}^{Z}_{t}=\sigma (Z_{s};0\le s\le t)\). Note that in our setting, \({\mathcal {F}}_{t}=\sigma (X_{s},Z_{s};0\le s\le t)\).

We have

$$\begin{aligned} {\mathbb {E}}[N^i_t|{\mathcal {F}}_s]&={\mathbb {E}}\left[ I_{\{t\ge \tau _i\}}\Big |{\mathcal {F}}_s\right] \nonumber \\&={\mathbb {E}}\left[ \int _0^{t\wedge \tau _i}\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) du\Big |{\mathcal {F}}_s\right] \qquad \qquad \qquad \qquad \qquad \qquad \qquad \text {(by (1))}\nonumber \\&={\mathbb {E}}\left[ I_{\{t\le \tau _i\}}\!\int _0^{t}\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) du \!+\!I_{\{t\ge \tau _i\}}\!\int _0^{\tau _i}\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) du\Big |{\mathcal {F}}_s\right] \nonumber \\&={\mathbb {E}}\left[ I_{\{t\le \tau _i\}}\int _0^{t}\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) du\Big |{\mathcal {F}}_s\right] \nonumber \\&\quad +{\mathbb {E}}\left[ I_{\{t\ge \tau _i\}}\int _0^{\tau _i}\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) du\Big |{\mathcal {F}}_s\right] . \end{aligned}$$
(4)

Now we calculate the first conditional expectation in equation (4). Since \(\lambda ^i(u,X_{u-},N_{(\cdot )})\) does not depend on \(N^i\) (or \(\tau _i\)) conditional on \(\tau _i\ge t\), we have

$$\begin{aligned} {\mathbb {E}}\left[ I_{\{t\le \tau _i\}}\!\int _0^{t}\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) \!du\Big |{\mathcal {F}}_s\right] \!&=\!\int _t^\infty \!\!I_{\{t\le \tau _i\}}\!\int _0^{t}\!\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) du\,d{\mathbb {P}}(\tau _i|{\mathcal {F}}_s)\\&=\int _t^\infty \int _0^{t}\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) du\,d{\mathbb {P}}(\tau _i|{\mathcal {F}}_s)\\&=\int _0^{t}\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) du\,\int _t^\infty d{\mathbb {P}}(\tau _i|{\mathcal {F}}_s)\\&=\!\int _0^{t}\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) du\Big (1\!-\!{\mathbb {P}}(\tau _i< t|{\mathcal {F}}_s)\Big ). \end{aligned}$$

Now we calculate the conditional expectation in the second term in Eq. (4). For \(\tau _i\le t\), \(\int _0^{\tau _i}\lambda ^i(u,X_{u-},N_{(\cdot )})du\) depends on \(X_{u-}\), \(N^j_{[0,u]}\), \(j\ne i\), and \(\tau _i\). Then

$$\begin{aligned}&{\mathbb {E}}\left[ I_{\{t\ge \tau _i\}}\int _0^{\tau _i}\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) du\Big |{\mathcal {F}}_s\right] \\&\quad =\int _0^t I_{\{t\ge \tau _i\}}\int _0^{\tau _i}\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) du\,d{\mathbb {P}}(\tau _i|{\mathcal {F}}_s)\\&\quad =\int _0^t\int _0^{\tau _i}\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) du\,d{\mathbb {P}}(s<\tau _i|{\mathcal {F}}_s).\\ \end{aligned}$$

Thus from Eq. (4) we have

$$\begin{aligned} {\mathbb {P}}(t|{\mathcal {F}}_s)&= \int _0^{t}\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) du\big (1-{\mathbb {P}}(t|{\mathcal {F}}_s)\big )\nonumber \\&\quad + \int _0^t\int _0^{\tau _i}\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) du\,d{\mathbb {P}}(\tau _i|{\mathcal {F}}_s) \end{aligned}$$
(5)

Denoting \(p(t)={\mathbb {P}}(t|{\mathcal {F}}_s)={\mathbb {P}}(s<t|{\mathcal {F}}_s)\), we have from Eq. (5)

$$\begin{aligned} p(t)= \int _0^{t}\lambda ^i\big (u,X_{u-},N_{(\cdot )}\big )du\,\big (1-p(t)\big )+ \int _0^t\int _0^{\tau _i}\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) du\,dp(\tau _i). \end{aligned}$$

Differentiating the above equation, we have

$$\begin{aligned} dp(t)&=\lambda ^i_tdt\,\big (1-p(t)\big )-\int _0^{t}\lambda ^i\left( u,X_{u-},N_{(\cdot )}\right) du\,dp(t)\\&\quad +\int _0^{t}\lambda ^i\big (u,X_{u-},N_{(\cdot )}\big )du\,dp(t)\\&=\lambda ^i_tdt\,\big (1-p(t)\big ). \end{aligned}$$

The above differential equation is equivalent to

$$\begin{aligned} d\big (1-p(t)\big )=-\lambda ^i_tdt\,\big (1-p(t)\big ), \end{aligned}$$

which yields

$$\begin{aligned} 1-p(t)=\exp \left( -\int _0^t\lambda ^i_udu\right) . \end{aligned}$$

Thus

$$\begin{aligned} {\mathbb {P}}\left( \tau _i>t\big |{\mathcal {F}}_s\right) =1-p(t)= \exp \left( -\int _0^t\lambda ^i_udu\right) . \end{aligned}$$

This proves the desired probability. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, R.J., Shen, J. Credit risk and contagion via self-exciting default intensity. Ann Finance 11, 319–344 (2015). https://doi.org/10.1007/s10436-015-0259-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10436-015-0259-z

Keywords

JEL Classification

Navigation