Skip to main content
Log in

Acoustophoresis of hollow and core-shell particles in two-dimensional resonance modes

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Motivated by the applications of ultrasonic particle manipulation in a biotechnological context, a study on acoustophoresis of hollow and core-shell particles is presented with analytical derivations, numerical simulations and confirming experiments. For a long-wavelength calculation of the acoustic radiation forces, the Gor’kov potential of hollow, air-filled particles and particles with solid or fluid core and shell is derived. The validity as well as the applicable range of the long-wavelength calculation is evaluated with numerical simulations in Comsol Multiphysics®. The results are experimentally verified in the acoustic field of an intrinsically two-dimensional fluid resonance mode, which allows for a more complex analysis than the common one-dimensional ultrasonic standing waves or their superposition to two-dimensional fields. Experiments were conducted with hollow glass particles (13.9 μm diameter) in a microfluidic chamber of 1.2 mm × 1.2 mm × 0.2 mm on a silicon-based device with piezoelectric excitation around 870 kHz. The described resonance mode is of additional interest for particle trapping and medium exchange on certain particle types, and it reveals a novel approach for particle characterization or separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Augustsson P, Laurell T (2012) Acoustofluidics 11: affinity specific extraction and sample decomplexing using continuous flow acoustophoresis. Lab Chip 12:1742–1752. doi:10.1039/C2LC40200A

    Article  Google Scholar 

  • Augustsson P, Barnkob R, Grenvall C, Deierborg T, Brundin P, Bruus H, Laurell T (2010) Measuring the acoustophoretic contrast factor of living cells in microchannels. In: Proceedings of 14th MicroTAS 14

  • Augustsson P, Barnkob R, Wereley ST, Bruus H, Laurell T (2011) Automated and temperature-controlled micro-piv measurements enabling long-term-stable microchannel acoustophoresis characterization. Lab Chip 11:4152–4164. doi:10.1039/C1LC20637K

    Article  Google Scholar 

  • Augustsson P, Magnusson C, Nordin M, Lilja H, Laurell T (2012) Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis. Anal Chem 84(18):7954–7962. doi:10.1021/ac301723s

    Article  Google Scholar 

  • Barnkob R, Augustsson P, Laurell T, Bruus H (2010) Measuring the local pressure amplitude in microchannel acoustophoresis. Lab Chip 10:563–570. doi:10.1039/B920376A

    Article  Google Scholar 

  • Blake FG (1949) Bjerknes forces in stationary sound fields. J Acoust Soc Am 21(5):551–551. doi:10.1121/1.1906547

    Google Scholar 

  • Bower A (2009) Applied mechanics of solids. CRC Press, Boca Raton, FL

    Google Scholar 

  • Bruus H (2012a) Acoustofluidics 2: perturbation theory and ultrasound resonance modes. Lab Chip 12:20–28. doi:10.1039/C1LC20770A

    Article  Google Scholar 

  • Bruus H (2012b) Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12:1014–1021. doi:10.1039/C2LC21068A

    Article  Google Scholar 

  • Bruus H, Dual J, Hawkes J, Hill M, Laurell T, Nilsson J, Radel S, Sadhal S, Wiklund M (2011) Forthcoming lab on a chip tutorial series on acoustofluidics: acoustofluidics-exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab Chip 11:3579–3580. doi:10.1039/C1LC90058G

    Article  Google Scholar 

  • Caille N, Thoumine O, Tardy Y, Meister JJ (2002) Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech 35(2):177–187. doi:10.1016/S0021-9290(01)00201-9

    Article  Google Scholar 

  • Choi SW, Zhang Y, Xia Y (2009) Fabrication of microbeads with a controllable hollow interior and porous wall using a capillary fluidic device. Adv Funct Mater 19(18):2943–2949. doi:10.1002/adfm.200900763

    Article  Google Scholar 

  • Cushing KW, Piyasena ME, Carroll NJ, Maestas GC, López BA, Edwards BS, Graves SW, López GP (2013) Elastomeric negative acoustic contrast particles for affinity capture assays. Anal Chem 85(4):2208–2215

    Article  Google Scholar 

  • Dual J, Hahn P, Leibacher I, Moller D, Schwarz T, Wang J (2012) Acoustofluidics 19: ultrasonic microrobotics in cavities: devices and numerical simulation. Lab Chip 12:4010–4021. doi:10.1039/C2LC40733G

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984. doi:10.1021/ac980656z

    Article  Google Scholar 

  • Evander M, Nilsson J (2012) Acoustofluidics 20: applications in acoustic trapping. Lab Chip 12:4667–4676. doi:10.1039/C2LC40999B

    Article  Google Scholar 

  • Evander M, Johansson L, Lilliehorn T, Piskur J, Lindvall M, Johansson S, Almqvist M, Laurell T, Nilsson J (2007) Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. Anal Chem 79(7):2984–2991. doi:10.1021/ac061576v

    Article  Google Scholar 

  • Gor’kov LP (1962) On the forces acting on a small particle in an acoustical field in an ideal fluid. Soviet Phys Doklady 6(9):773–775

    Google Scholar 

  • Griffiths AD, Tawfik DS (2006) Miniaturising the laboratory in emulsion droplets. Trend Biotechnol 24(9):395–402. doi:10.1016/j.tibtech.2006.06.009

    Article  Google Scholar 

  • Hartono D, Liu Y, Tan PL, Then XYS, Yung LYL, Lim KM (2011) On-chip measurements of cell compressibility via acoustic radiation. Lab Chip 11:4072–4080. doi:10.1039/C1LC20687G

    Article  Google Scholar 

  • Hasegawa T, Hino Y, Annou A, Noda H, Kato M, Inoue N (1993) Acoustic radiation pressure acting on spherical and cylindrical shells. J Acoust Soc Am 93(1):154–161. doi:10.1121/1.405653

    Article  Google Scholar 

  • Hennequin Y, Pannacci N, de Torres CP, Tetradis-Meris G, Chapuliot S, Bouchaud E, Tabeling P (2009) Synthesizing microcapsules with controlled geometrical and mechanical properties with microfluidic double emulsion technology. Langmuir 25(14):7857–7861. doi:10.1021/la9004449, pMID: 19594177

    Google Scholar 

  • Hultström J, Manneberg O, Dopf K, Hertz H, Brismar H, Wiklund M (2007) Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip. Ultrasound Med Biol 33(1):145–151. doi:10.1016/j.ultrasmedbio.2006.07.024

    Article  Google Scholar 

  • Jeong WC, Choi MK, Lim CH, Yang SM (2012) Microfluidic synthesis of atto-liter scale double emulsions toward ultrafine hollow silica spheres with hierarchical pore networks. Lab Chip 12:5262–5271. doi:10.1039/C2LC40886D

    Article  Google Scholar 

  • Kanazaki T, Okada T (2012) Two-dimensional particle separation in coupled acoustic-gravity-flow field vertically by composition and laterally by size. Anal Chem 84(24):10750–10755. doi:10.1021/ac302637e

    Google Scholar 

  • Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36:492–506. doi:10.1039/B601326K

    Article  Google Scholar 

  • Lilliehorn T, Nilsson M, Simu U, Johansson S, Almqvist M, Nilsson J, Laurell T (2005) Dynamic arraying of microbeads for bioassays in microfluidic channels. Sensors Actuators B 106:851–858

    Article  Google Scholar 

  • Lim C, Zhou E, Quek S (2006) Mechanical models for living cells-a review. J Biomech 39(2):195–216. doi:10.1016/j.jbiomech.2004.12.008

    Article  Google Scholar 

  • Liu Y, Lim KM (2011) Particle separation in microfluidics using a switching ultrasonic field. Lab Chip 11:3167–3173. doi:10.1039/C1LC20481E

    Article  Google Scholar 

  • Manneberg O, Svennebring J, Hertz HM, Wiklund M (2008a) Wedge transducer design for two-dimensional ultrasonic manipulation in a microfluidic chip. J Micromech Microeng 18(9):095025

    Google Scholar 

  • Manneberg O, Vanherberghen B, Svennebring J, Hertz HM, Önfelt B, Wiklund M (2008b) A three-dimensional ultrasonic cage for characterization of individual cells. Appl Phys Lett 93(6):063901. doi:10.1063/1.2971030

    Article  Google Scholar 

  • Manneberg O, Vanherberghen B, Onfelt B, Wiklund M (2009) Flow-free transport of cells in microchannels by frequency-modulated ultrasound. Lab Chip 9:833–837. doi:10.1039/B816675G

    Article  Google Scholar 

  • Mishra P, Glynne-Jones P, Boltryk RJ, Hill M (2012) Efficient finite element modeling of acoustic radiation forces on inhomogeneous elastic particles. AIP Conf Proc 1433(1):753–756. doi:10.1063/1.3703290

    Article  Google Scholar 

  • Mitri F (2005) Acoustic radiation force acting on elastic and viscoelastic spherical shells placed in a plane standing wave field. Ultrasonics 43(8):681–691. doi:10.1016/j.ultras.2005.03.002

    Article  Google Scholar 

  • Neild A, Oberti S, Dual J (2007) Design, modeling and characterization of microfluidic devices for ultrasonic manipulation. Sensors Actuators B Chem 121(2):452–461. doi:10.1016/j.snb.2006.04.065

    Article  Google Scholar 

  • Oberti S, Neild A, Dual J (2007) Manipulation of micrometer sized particles within a micromachined fluidic device to form two-dimensional patterns using ultrasound. J Acoust Soc Am 121(2):778–785. doi:10.1121/1.2404920

    Article  Google Scholar 

  • Oberti S, Neild A, Quach R, Dual J (2009) The use of acoustic radiation forces to position particles within fluid droplets. Ultrasonics 49(1):47–52. doi:10.1016/j.ultras.2008.05.002

    Article  Google Scholar 

  • Salsac AV, Zhang L, Gherbezza JM (2011) Measurement of the mechanical properties of alginate beads using ultrasounds. In: 19ème Congrès Français de Mécanique. doi:http://hdl.handle.net/2042/36663

  • Svennebring J, Manneberg O, Skafte-Pedersen P, Bruus H, Wiklund M (2009) Selective bioparticle retention and characterization in a chip-integrated confocal ultrasonic cavity. Biotechnol Bioeng 103(2):323–328. doi:10.1002/bit.22255

    Article  Google Scholar 

  • Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308(5721):537–541. doi:10.1126/science.1109164

    Article  Google Scholar 

  • Vanherberghen B, Manneberg O, Christakou A, Frisk T, Ohlin M, Hertz HM, Onfelt B, Wiklund M (2010) Ultrasound-controlled cell aggregation in a multi-well chip. Lab Chip 10:2727–2732. doi:10.1039/C004707D

    Article  Google Scholar 

  • Wiklund M (2012) Acoustofluidics 12: biocompatibility and cell viability in microfluidic acoustic resonators. Lab Chip 12:2018–2028. doi:10.1039/C2LC40201G

    Google Scholar 

  • Wiklund M, Hertz HM (2006) Ultrasonic enhancement of bead-based bioaffinity assays. Lab Chip 6:1279–1292. doi:10.1039/B609184A

    Article  Google Scholar 

  • Wiklund M, Radel S, Hawkes JJ (2012) Acoustofluidics 21: ultrasound-enhanced immunoassays and particle sensors. Lab Chip 12:4667–4676. doi:10.1039/C2LC41073G

    Article  Google Scholar 

  • Wiklund M, Radel S, Hawkes JJ (2013) Acoustofluidics 21: ultrasound-enhanced immunoassays and particle sensors. Lab Chip 13:25–39. doi:10.1039/C2LC41073G

    Article  Google Scholar 

  • Yosioka K, Kawasima Y (1955) Acustica 5:167–173

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude for funding by ETH Zurich and the Swiss National Science Foundation, SNF No. 200021_126986.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Leibacher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MPG (3846 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leibacher, I., Dietze, W., Hahn, P. et al. Acoustophoresis of hollow and core-shell particles in two-dimensional resonance modes. Microfluid Nanofluid 16, 513–524 (2014). https://doi.org/10.1007/s10404-013-1240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1240-7

Keywords

Navigation