Skip to main content
Log in

Landslide detection and monitoring capability of boat-based mobile laser scanning along Dieppe coastal cliffs, Normandy

  • Technical Note
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Integrated in a wide research assessing destabilizing and triggering factors to model cliff dynamic along the Dieppe’s shoreline in High Normandy, this study aims at testing boat-based mobile LiDAR capabilities by scanning 3D point clouds of the unstable coastal cliffs. Two acquisition campaigns were performed in September 2012 and September 2013, scanning (1) a 30-km-long shoreline and (2) the same test cliffs in different environmental conditions and device settings. The potentials of collected data for 3D modelling, change detection and landslide monitoring were afterward assessed. By scanning during favourable meteorological and marine conditions and close to the coast, mobile LiDAR devices are able to quickly scan a long shoreline with median point spacing up to 10 cm. The acquired data are then sufficiently detailed to map geomorphological features smaller than 0.5 m2. Furthermore, our capability to detect rockfalls and erosion deposits (>m3) is confirmed, since using the classical approach of computing differences between sequential acquisitions reveals many cliff collapses between Pourville and Quiberville and only sparse changes between Dieppe and Belleville-sur-Mer. These different change rates result from different rockfall susceptibilities. Finally, we also confirmed the capability of the boat-based mobile LiDAR technique to monitor single large changes, characterizing the Dieppe landslide geometry with two main active scarps, retrogression up to 40 m and about 100,000 m3 of eroded materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abellán A, Calvet J, Vilaplana JM, Blanchard J (2010) Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology 119:162–171

    Article  Google Scholar 

  • Abellán A, Oppikofer T, Jaboyedoff M, Rosser NJ, Lim M, Lato MJ (2014) Terrestrial laser scanning of rock slope instabilities. Earth Surf Process Landf 39:80–97

    Article  Google Scholar 

  • Adams JC, Chandler JH (2002) Evaluation of LiDAR and medium scale photogrammetry for detecting soft-cliffs coastal change. Photogramm Rec 17:405–418

    Article  Google Scholar 

  • Alho P, Kukko A, Hyyppä H, Kaartinen H, Hyyppä J, Jaakkola A (2009) Application of boat-based laser scanning for river survey. Earth Surf Process Landf 34:1831–1838

    Article  Google Scholar 

  • Applanix Corporation (2011) POS MV V5 installation and operation guide, revision 3

  • Baltsavias EP (1999) Airborne laser scanning: basic relations and formulas. ISPRS J Photogramm Remote Sens 54:199–214

    Article  Google Scholar 

  • Baroň I, Supper R (2013) Application and reliability of techniques for landslide site investigation, monitoring and early warning—outcomes from a questionnaire study. Nat Hazards Earth Syst Sci 13:3157–3168

    Article  Google Scholar 

  • Beraldin JA, Blais F, Boulanger P (2000) Real world modelling through high resolution digital 3D imaging of objects and structures. ISPRS J PhotogramM Remote Sens 55:230–250

    Article  Google Scholar 

  • Besl PJ, McKay ND (1992) A method for registration of 3D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256

    Article  Google Scholar 

  • Brock JC, Purkis SJ (2009) The emerging role of lidar remote sensing in coastal research and resource management. J Coast Res SI(53):1–5

    Article  Google Scholar 

  • Carrea D, Abellán A, Derron MH, Jaboyedoff M (2014) Automatic rockfalls volume estimation based on terrestrial laser scanning data. In: Proceedings of the IAEG XII Congress, 15–19 September 2014, Turin Italy, 6 p

  • Collins B, Sitar N (2008) Processes of coastal bluff erosion in weakly lithified sands, Pacifica, California, USA. Geomorphology 97:483–501

    Article  Google Scholar 

  • Costa S (1997) Dynamique littorale et risques naturels: L’impact des aménagements, des variations du niveau marin et des modifications climatiques entre la Baie de Seine et la Baie de Somme. PhD thesis of the University of Paris I (Panthéon Sorbonne), 347 p

  • Costa S (2014) The High Normandy chalk cliffs: an inspiring geomorphosite for painters and novelists. In: Fort M, André MF (eds) Landscapes and landforms of France. Springer, New York, pp 29–39

    Chapter  Google Scholar 

  • Costa S, Delahaye D, Freiré-Diaz S, Davidson R, Di-Nocera L, Plessis E (2004) Quantification by photogrammetric analysis of the Normandy and Picardy rocky coast dynamic (Normandy, France). In: Mortimore RN, Duperret A (eds) Coastal chalk cliff instability. Engineering Geology Special Publications, Geological Society, London, pp 139–148

    Google Scholar 

  • Dewez T, Rohmer J, Regard V, Cnudde C (2013) Probabilistic coastal cliff collapse hazard from repeated terrestrial laser surveys: case study from Mesnil Val (Normandy, northern France). J Coast Res 65:702–707

    Google Scholar 

  • Duperret A, Genter A, Mortimores RN, Delacourt B, De Pomerai MR (2002) Coastal rock cliff erosion by collapse at puys, France: the role of impervious marl seams within chalk of NW Europe. J Coast Res 18:52–61

    Google Scholar 

  • Earlie CS, Masselink G, Russell PE, Shail RK (2014) Application of airborne LiDAR to investigate rates of recession in rocky coast environments. J Coast Conserv 15 p

  • Edelsbrunner H, Mücke EP (1994) Three-dimensional alpha shapes. ACM Trans Graph 13:43–72

    Article  Google Scholar 

  • Friedman JH, Bentely J, Finkel RA (1977) An algorithm for finding best matches in logarithmic expected time. ACM Trans Math Softw 3:209–226

    Article  Google Scholar 

  • Fukuzono T (1990) Recent studies on time prediction of slope failure. Landslide News 4:9–12

    Google Scholar 

  • Gili J, Corominas J, Rius J (2000) Using global positioning system techniques in landslide monitoring. Eng Geol 55:167–192

    Article  Google Scholar 

  • Glennie C, Brooks B, Ericksen T, Hauser D, Hudnut K, Foster J, Avery J (2013) Compact multipurpose mobile laser scanning system—initial tests and results. Remote Sens 5:521–538

    Article  Google Scholar 

  • Gordon S, Litchi D, Stewart M (2001) Application of a high-resolution, ground-based laser scanner for deformation measurements. In: Proceedings of the 10th International Symposium on Deformation Measurements, 19–22 March 2001; Orange USA, 23–32

  • Höhle J, Höhle M (2009) Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J Photogramm Remote Sens 64:398–406

    Article  Google Scholar 

  • Irish JL, Lillycrop WJ (1999) Scanning laser mapping of the coastal zone: the SHOALS system. ISPRS J Photogramm Remote Sens 54:123–129

    Article  Google Scholar 

  • Jaakkola A, Hyyppä J, Hyyppä H, Kukko A (2008) Retrieval algorithms for road surface modelling using laser-based mobile mapping. Sensors 8:5238–5249

    Article  Google Scholar 

  • Jaboyedoff M, Demers D, Locat J, Locat A, Locat P, Oppikofer T, Robitaille D, Turmel D (2009) Use of terrestrial laser scanning for the characterization of retrogressive landslides in sensitive clay and rotational landslides in river banks. Can Geotech J 46:1379–1390

    Article  Google Scholar 

  • Jaboyedoff M, Oppikofer T, Abellán A, Derron MH, Loye A, Metzger R, Pedrazzini A (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61:5–28

    Article  Google Scholar 

  • Kukko A, Kaartinen H, Hyyppä J, Chen Y (2012) Multiplatform mobile laser scanning: usability and performance. Sensors 12:11712–11733

    Article  Google Scholar 

  • Leroueil S (2001) Natural slopes and cuts: movement and failure mechanisms. Geotechnique 51(3):197–243

    Article  Google Scholar 

  • Letortu P (2013) Le recul des falaises crayeuses haut-normandes et les inondations par la mer en Manche centrale et orientale: de la quantification de l’aléa à la caractérisation des risques induits. PhD thesis of the University of Caen Basse-Normandie 414 p

  • Letortu P, Costa S, Cantat O (2012) Les submersions marines en Manche Orientale: approche inductive et naturaliste pour la characterisation des facteurs responsables des inondations par la mer. Climatologie 9:31–57

    Google Scholar 

  • Letortu P, Costa S, Bensaid A, Cador JM, Quénol H (2014) Vitesses et rythmes de recul des falaises crayeuses de Haute-Normandie (France). Géomorphol Relief Process Environ 2:133–144

    Article  Google Scholar 

  • Lichti D, Gordon S, Stewart M (2002) Ground-based laser scanners: operation, systems and applications. Geomatica 56:21–33

    Google Scholar 

  • Lichti D, Gordon S, Tipdecho T (2005) Error models and propagation in directly georeferenced terrestrial laser scanner networks. J Surv Eng 131:135–142

    Article  Google Scholar 

  • Lim M, Petley DN, Rosser NJ, Allison RJ, Long AJ, Pybus D (2005) Combined digital photogrammetry and time-of-flight laser scanning for monitoring cliff evolution. Photogramm Rec 20:109–129

    Article  Google Scholar 

  • Michoud C, Longchamp C, Derron MH, Jaboyedoff M, Blikra LH, Kristensen L, Oppikofer T (2010) The terrestrial and offshore laser scanning acquisitions of September 2010 in Sunndalsøra (Møre og Romsdal, Norway)—techniques, processing and data. Internal technical report University of Lausanne, Lausanne 10 p

  • Michoud C, Bazin S, Blikra LH, Derron MH, Jaboyedoff M (2013) Experiences from site-specific landslide early warning systems. Nat Hazards Earth Syst Sci 13:2659–2673

    Article  Google Scholar 

  • Oppikofer T, Jaboyedoff M, Blikra LH, Derron MH, Metzger R (2009) Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning. Nat Hazards Earth Syst Sci 9:1003–1019

    Article  Google Scholar 

  • Rosser NJ, Petley DN, Lim M, Dunning SA, Allison RJ (2005) Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Q J Eng Geol Hydrogeol 38:363–375

    Article  Google Scholar 

  • Rosser NJ, Lim N, Petley DN, Dunning S, Allison RJ (2007) Patterns of precursory rockfall prior to slope failure. J Geophys Res 112:F04014

    Google Scholar 

  • Royán MJ, Abellán A, Jaboyedoff M, Vilaplana JM, Calvet J (2014) Spatio-temporal analysis of rockfall pre-failure deformation using terrestrial LiDAR. Landslides 11:697–709

    Article  Google Scholar 

  • SafeLand deliverable 4.1 (2012) Review of techniques for landslide detection, fast characterization, rapid mapping and long-term monitoring. Michoud C., Abellán A., Derron M.-H. and Jaboyedoff M. (eds.), SafeLand European project, 401 p., available at http://www.safeland-fp7.eu

  • Tupling SJ, Pierrynowski MR (1987) Use of cardan angles to locate rigid bodies in three-dimensional space. Med Biol Eng Comput 25(5):527–532

    Article  Google Scholar 

  • Vaaja M, Hyyppä J, Kukko A, Kaartinen H, Hyyppä H, Alho P (2011) Mapping topography changes and elevation accuracies using a mobile laser scanner. Remote Sens 3:587–600

    Article  Google Scholar 

  • Vaaja M, Kukko A, Kaartinen H, Kurkela M, Kasvi E, Flener C, Hyyppä H, Hyyppä J, Järvelä J, Alho P (2013) Data processing and quality evaluation of a boat-based mobile laser scanning system. Sensors 13:12497–12515

    Article  Google Scholar 

  • Vosselman G, Maas H (2010) Airborne and terrestrial laser scanning. CRC Press, Boca Raton

    Google Scholar 

  • Williams K, Olsen MJ, Roe GV, Glennie C (2013) Synthesis of transportation applications of mobile LiDAR. Remote Sens 5:4652–4692

    Article  Google Scholar 

  • Young AP, Olsen MJ, Driscoll N, Flick RE, Gutierrez R, Guza RT, Johnstone E, Kuester F (2013) Comparison of airborne and terrestrial LiDAR estimates of seacliff erosion in southern California. Photogramm Eng Remote Sens 76:421–427

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Antonio Abellán and Pierrick Nicolet for the appreciated and constructive discussions that significantly supported this study. TLS point clouds of the Cap d’Ailly and Puys sites were also acquired by Emmanuel Augereau and Réjanne Le Bivic. This research was supported by (1) the Swiss National Research Foundation under project FNS-1440404 entitled “Characterizing and analysing 3D temporal slope evolution” and (2) the Euro-Mediterranean Centre on Insular Coastal Dynamics & the European Center on Geomorphological Hazards coordinated programme “Coupling terrestrial and marine datasets for coastal hazard assessment and risk reduction in changing environments” funded by the EUR-OPA Major Hazard Agreement of the Council of Europe (2012–2013). An anonymous referee helped us to improve this technical note thanks to pertinent remarks and suggestions. Finally, Alban Legardien, the Aillot’s Captain, is warmly acknowledged for being a great host and his professionalism during acquisition campaigns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Michoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michoud, C., Carrea, D., Costa, S. et al. Landslide detection and monitoring capability of boat-based mobile laser scanning along Dieppe coastal cliffs, Normandy. Landslides 12, 403–418 (2015). https://doi.org/10.1007/s10346-014-0542-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-014-0542-5

Keywords

Navigation