Skip to main content

Advertisement

Log in

Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Identification of landslides and production of landslide susceptibility maps are crucial steps that can help planners, local administrations, and decision makers in disaster planning. Accuracy of the landslide susceptibility maps is important for reducing the losses of life and property. Models used for landslide susceptibility mapping require a combination of various factors describing features of the terrain and meteorological conditions. Many algorithms have been developed and applied in the literature to increase the accuracy of landslide susceptibility maps. In recent years, geographic information system-based multi-criteria decision analyses (MCDA) and support vector regression (SVR) have been successfully applied in the production of landslide susceptibility maps. In this study, the MCDA and SVR methods were employed to assess the shallow landslide susceptibility of Trabzon province (NE Turkey) using lithology, slope, land cover, aspect, topographic wetness index, drainage density, slope length, elevation, and distance to road as input data. Performances of the methods were compared with that of widely used logistic regression model using ROC and success rate curves. Results showed that the MCDA and SVR outperformed the conventional logistic regression method in the mapping of shallow landslides. Therefore, multi-criteria decision method and support vector regression were employed to determine potential landslide zones in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akgun A (2012) A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at Izmir, Turkey. Landslides 9(1):93–106

    Article  Google Scholar 

  • Armas I (2011) An analytic multicriteria hierarchical approach to assess landslide vulnerability. Case study: Cornu village, Subcarpathian Prahova Valley/Romania. Z Geomorphol 55(2):209–229

    Article  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1–2):15–31

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1(1):73–81

    Article  Google Scholar 

  • Ayalew L, Yamagishi H, Marui H, Kanno T (2005) Landslides in Sado Island of Japan: part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Eng Geol 81(4):432–445

    Article  Google Scholar 

  • Bai SB, Lu GN, Wang JA, Zhou PG, Ding LA (2011) GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China. Environ Earth Sci 62(1):139–149

    Article  Google Scholar 

  • Ballabio C, Sterlacchini S (2012) Support Vector machines for landslide susceptibility mapping: the Staffora River Basin Case Study, Italy. Math Geosci 44(1):47–70

    Article  Google Scholar 

  • Bayrak T, Ulukavak M (2009) Trabzon heyelanları. Harita Teknolojileri Elektronik Dergisi 1(2):20–30 (in Turkish)

    Google Scholar 

  • Begueria S (2006) Changes in land cover and shallow landslide activity: a case study in the Spanish Pyrenees. Geomorphology 74(1–4):196–206

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24(1):43–69

    Article  Google Scholar 

  • Boroushaki S, Malczewski J (2008) Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS. Comput Geosci 34(4):399–410

    Article  Google Scholar 

  • Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazard Earth Sys 5(6):853–862

    Article  Google Scholar 

  • Castellanos Abella EA, Van Westen CJ (2007) Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides 4(4):311–325

    Article  Google Scholar 

  • Chaplot V, Le Bissonnais Y (2000) Field measurements of interrill erosion under different slopes and plot sizes. Earth Surf Proc Land 25(2):145–153

    Article  Google Scholar 

  • Cherkassky V, Ma YQ (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw 17(1):113–126

    Article  Google Scholar 

  • Cherkassky V, Mulier F (2007) Learning from data: concepts, theory and methods, 2nd edn. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  • Collins TK (2008) Debris flows caused by failure of fill slopes: early detection, warning, and loss prevention. Landslides 5(1):107–120

    Article  Google Scholar 

  • Conforti M, Aucelli PPC, Robustelli G, Scarciglia F (2011) Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Nat Hazards 56(3):881–898

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and, slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42(3–4):213–228

    Article  Google Scholar 

  • Dai FC, Lee CF, Li J, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40(3):381–391

    Article  Google Scholar 

  • De Leeuw J, Jia H, Yang L, Liu X, Schmidt K, Skidmore AK (2006) Comparing accuracy assessments to infer superiority of image classification methods. Int J Remote Sens 27(1):223–232

    Article  Google Scholar 

  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards 65(1):135–165

    Article  Google Scholar 

  • Eastman R (2003) Idrisi Kilimanjaro Manual and Tutorial. Clark Labs, Clark University, Worchester

    Google Scholar 

  • Ergünay O (2007) Türkiye’nin afet profili. TMMOB Afet Sempozyumu, Ankara, pp 42–45 (in Turkish)

    Google Scholar 

  • Ferri C, Hernandez-Orallo J, Modroiu R (2009) An experimental comparison of performance measures for classification. Pattern Recogn Lett 30(1):27–38

    Article  Google Scholar 

  • Foody GM (2004) Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogramm Eng Rem S 70(5):627–633

    Article  Google Scholar 

  • Fu WJ, He YR (2010) Landslide susceptibility evaluation based on fuzzy support vector machine. Sixth Int Symp Digit Earth Data Process Appl 7841. doi:10.1117/12.873267

  • Gokceoglu C, Sonmez H, Nefeslioglu HA, Duman TY, Can T (2005) The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Eng Geol 81(1):65–83

    Article  Google Scholar 

  • Gómez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78(1–2):11–27

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1–4):181–216

    Article  Google Scholar 

  • Hickey R (2000) Slope angle and slope length solutions for GIS. Cartography 29(1):1–8

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (1989) Applied regression analysis. John Wiley and Sons, New York

    Google Scholar 

  • Kavzoglu T, Colkesen I (2009) A kernel functions analysis for support vector machines for land cover classification. Int J Appl Earth Obs 11(5):352–359

    Article  Google Scholar 

  • Liu BY, Nearing MA, Shi PJ, Jia ZW (2000) Slope length effects on soil loss for steep slopes. Soil Sci Soc Am J 64(5):1759–1763

    Article  Google Scholar 

  • Malczewski J (1999) GIS and multicriteria decision analysis. John Wiley and Sons, Toronto

    Google Scholar 

  • Melo ALO, Calijuri ML, Duarte ICD, Azevedo RF, Lorentz JF (2006) Strategic decision analysis for selection of landfill sites. J Surv Eng-Asce 132(2):83–92

    Article  Google Scholar 

  • Menard S (2001) Applied logistic regression analysis, 2nd edn. Sage Publication, Thousand Oaks, California

    Google Scholar 

  • Nandi A, Shakoor A (2010) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110(1–2):11–20

    Article  Google Scholar 

  • Neuhauser B, Damm B, Terhorst B (2012) GIS-based assessment of landslide susceptibility on the base of the weights-of-evidence model. Landslides 9(4):511–528

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51(0):350–365

    Article  Google Scholar 

  • Pradhan B, Lee S (2010) Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Modell Softw 25(6):747–759

    Article  Google Scholar 

  • Restrepo C, Vitousek P, Neville P (2003) Landslides significantly alter land cover and the distribution of biomass: an example from the Ninole ridges of Hawai'i. Plant Ecol 166(1):131–143

    Article  Google Scholar 

  • Roy B (1996) Multicriteria methodology for decision aiding. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process: planning, priority setting. Resource allocation. McGraw-Hill, New York

    Google Scholar 

  • Santacana N, Baeza B, Corominas J, De Paz A, Marturia J (2003) A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet area (Eastern Pyrenees, Spain). Nat Hazards 30(3):281–295

    Article  Google Scholar 

  • Sarkar S, Kanungo DP (2004) An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogramm Eng Rem S 70(5):617–625

    Article  Google Scholar 

  • Segoni S, Rossi G, Catani F (2012) Improving basin-scale shallow landslides modelling using reliable soil thickness maps. Nat Hazards 61:85–101

    Article  Google Scholar 

  • Smola AJ, Scholkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222

    Article  Google Scholar 

  • Suzen ML, Doyuran V (2004) Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71(3–4):303–321

    Article  Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293

    Article  Google Scholar 

  • Vapnik VN (1999) The nature of statistical learning yheory, 2nd edn. Springer, New York

    Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides analysis and control. National Academy of Sciences, New York, pp 12–33

    Google Scholar 

  • Vivas L (1992) Los Andes Venezolanos. Academia Nacional de la Historia, Caracas

    Google Scholar 

  • Wang WD, Xie CM, Du XG (2009) Landslides susceptibility mapping based on geographical information system, GuiZhou, south-west China. Environ Geol 58(1):33–43

    Article  Google Scholar 

  • Yalcin A (2011) A geotechnical study on the landslides in the Trabzon Province, NE, Turkey. Appl Clay Sci 52(1–2):11–19

    Article  Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85(3):274–287

    Article  Google Scholar 

  • Yao X, Tham LG, Dai FC (2008) Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology 101(4):572–582

    Article  Google Scholar 

  • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79(3–4):251–266

    Article  Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Comput Geosci 35(6):1125–1138

    Article  Google Scholar 

  • Yilmaz I (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61(4):821–836

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inform Control 8(3):338–353

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taskin Kavzoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavzoglu, T., Sahin, E.K. & Colkesen, I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11, 425–439 (2014). https://doi.org/10.1007/s10346-013-0391-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-013-0391-7

Keywords

Navigation