Skip to main content

Advertisement

Log in

Large predators limit herbivore densities in northern forest ecosystems

  • Original Paper
  • Published:
European Journal of Wildlife Research Aims and scope Submit manuscript

Abstract

There is a lack of scientific consensus about how top-down and bottom-up forces interact to structure terrestrial ecosystems. This is especially true for systems with large carnivore and herbivore species where the effects of predation versus food limitation on herbivores are controversial. Uncertainty exists whether top-down forces driven by large carnivores are common, and if so, how their influences vary with predator guild composition and primary productivity. Based on data and information in 42 published studies from over a 50-year time span, we analyzed the composition of large predator guilds and prey densities across a productivity gradient in boreal and temperate forests of North America and Eurasia. We found that predation by large mammalian carnivores, especially sympatric gray wolves (Canis lupus) and bears (Ursus spp.), apparently limits densities of large mammalian herbivores. We found that cervid densities, measured in deer equivalents, averaged nearly six times greater in areas without wolves compared to areas with wolves. In areas with wolves, herbivore density increased only slightly with increasing productivity. These predator effects are consistent with the exploitation ecosystems hypothesis and appear to occur across a broad range of net primary productivities. Results are also consistent with theory on trophic cascades, suggesting widespread and top-down forcing by large carnivores on large herbivores in forest biomes across the northern hemisphere. These findings have important conservation implications involving not only the management of large carnivores but also that of large herbivores and plant communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrams PA (2000) The evolution of predator–prey interactions: theory and evidence. Annu Rev Ecol Syst 31:79–105

    Article  Google Scholar 

  • Angelstam P, Wikberg PE, Danilov P, Faber WE, Nygren K (2000) Effects of moose density on timber quality and biodiversity restoration in Sweden, Finland, and Russian Karelia. Alces 36:133–145

    Google Scholar 

  • Aunapuu M, Dahlgren J, Oksanen T, Grellmann D, Oksanen L, Olofsson J, Rammul U, Schneider M, Johansen G, Hyden HO (2008) Spatial patterns and dynamic responses of arctic food webs corroborate the exploitation ecosystems hypothesis. Am Nat 171:249–262

    Article  PubMed  Google Scholar 

  • Bachelet D, Lenihan JM, Daly C, Neilson RP, Ojima DS, Parton WJ (2001) MC1: a dynamic vegetation model for estimating the distribution of vegetation and associated ecosystem fluxes of carbon, nutrients, and water. USDA General Technical Report PNW-GTR-508, 95 pp

  • Ballard WB, Whitman JS, Gardner CL (1987) Ecology of an exploited wolf population in south central Alaska. Wildl Monogr 98:1–54

    Google Scholar 

  • Baskin LM (1994) Population ecology of the moose in the Russian Southern Taiga. Alces 30:51–55

    Google Scholar 

  • Behrend DF, Mattfeld GF, Tierson WC, Wiley JE III (1970) Deer density control for comprehensive forest management. J For 68:695–700

    Google Scholar 

  • Berger J (2005) Hunting by carnivores and humans: does functional redundancy occur and does it matter? In: Ray JC, Redford KH, Steneck RS, Berger J (eds) Large carnivores and the conservation of biodiversity. Island Press, Washington, DC, pp 315–341

    Google Scholar 

  • Bergerud AT, Elliot JP (1985) Dynamics of caribou and wolves in northern British Columbia. Can J Zool 64:1515–1529

    Article  Google Scholar 

  • Bergerud AT, Wyatt W, Snider B (1983) The role of wolf predation in limiting moose population. J Wildl Manage 47:977–988

    Article  Google Scholar 

  • Beschta RL, Ripple WJ (2007) Wolves, elk, and aspen in the winter range of Jasper National Park, Canada. Can J For Res 37:1873–1885

    Article  Google Scholar 

  • Beschta RL, Ripple WJ (2009) Large predators and trophic cascades in terrestrial ecosystems of the western United States. Biol Conserv 142:2401–2414

    Article  Google Scholar 

  • Beschta RL, Ripple WJ (2010) Mexican wolves, elk, and aspen in Arizona: is there a trophic cascade? For Ecol Manage 260:915–922

    Article  Google Scholar 

  • Beschta RL, Ripple WJ (2011) The role of large predators in maintaining riparian plant communities and river morphology. Geomorphology, in press. doi:10.1016/j.geomorph.2011.04.042

  • Borer ET, Seabloom EW, Shurnin JB, Anderson KE, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2005) What determines the strength of a trophic cascade? Ecology 86:528–537

    Article  Google Scholar 

  • Cairns AL, Telfer ES (1980) Habitat use by four sympatric ungulates in boreal mixedwood forest. J Wildl Manage 47:977–988

    Google Scholar 

  • Carbyn LN (1983) Wolf predation on elk in Riding Mountain National Park, Manitoba. J Wildl Manage 47:963–976

    Article  Google Scholar 

  • Ceballos G, Ehrlich PR (2002) Mammal population losses and the extinction crisis. Science 296:904–907

    Article  CAS  PubMed  Google Scholar 

  • Cederlund G, Markgren G (1987) The development of the Swedish moose population, 1970–1983. Swedish Wildl Res Suppl 1:55–61

    Google Scholar 

  • Côté SD, Rooney TP, Tremblay J, Dussault C, Waller DM (2004) Ecological impacts of deer overabundance. Annu Rev Eco Evol Syst 35:113–147

    Article  Google Scholar 

  • Crête M (1987) The impact of sport hunting on North American moose. Swedish Wildl Res Suppl 1:553–563

    Google Scholar 

  • Crête M (1989) Approximation of K carrying capacity for moose in eastern Quebec. Can J Zool 7:373–380

    Article  Google Scholar 

  • Crête M (1999) The distribution of deer biomass supports the hypothesis of exploitation ecosystems. Ecol Lett 2:223

    Article  Google Scholar 

  • Crête M, Manseau M (1996) Natural regulation of cervidae along a 1000 km latitudinal gradient: change in trophic dominance. Evol Ecol 10:51–62

    Article  Google Scholar 

  • Crête M, Manseau M (1996) Natural regulation of cervidae along a 1000 km latitudinal gradient: change in trophic dominance. Evol Ecol 10:51–62

    Article  Google Scholar 

  • Daly C, Bachelet D, Lenihan JM, Neilson RP, Parton W, Ojima D (2000) Dynamic simulation of tree-grass interactions for global change studies. Ecol Appl 10:449–469

    Google Scholar 

  • Detling JK (1998) Mammalian herbivores: ecosystem-level effects in two grassland national parks. Wildl Soc Bull 26:438–448

    Google Scholar 

  • Diamond JM (1983) Ecology: laboratory, field and natural experiments. Nature 304:586–587

    Article  Google Scholar 

  • Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  CAS  PubMed  Google Scholar 

  • Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, Ripple WJ, Sandin SA, Scheffer M, Schoener TW, Shurin JB, Sinclair ARE, Soulé ME, Virtanen R, Wardle DA (2011) Trophic downgrading of planet earth. Science 333:301–306

    Article  CAS  PubMed  Google Scholar 

  • Filonov C (1980) Predator–prey problems in nature reserves of the European part of the USSR. J Wildl Manage 44:389–396

    Article  Google Scholar 

  • Frelich LE, Lorimer CG (1985) Current and predicted long-term effects of deer browsing in hemlock forests in Michigan, USA. Biol Conserv 34:99–120

    Article  Google Scholar 

  • Fretwell SD (1977) The regulation of plant communities by food chains exploiting them. Perspect Biol Med 20:169–185

    Article  Google Scholar 

  • Fuller TK (1989) Population dynamics of wolves in north-central Minnesota. Wildl Monogr 105:1–141

    Google Scholar 

  • Fuller TK, Keith LB (1980) Wolf population dynamics and prey relationships in northeastern Alberta. J Wildl Manage 44:583–602

    Article  Google Scholar 

  • Gasaway WC, Stephenson RO, Davis JL, Shepherd PEK, Burris OE (1983) Interrelationships of wolves, prey, and man in interior Alaska. Wildl Monogr 8413

  • Gasaway WC, Stephenson RO, Davis JL, Shepherd PEK, Burris OE (1983b) Interrelationships of wolves, prey, and man in interior Alaska. Wildl Monogr 84:1–50

    Google Scholar 

  • Gasaway WC, Boertje RD, Grangaard DV, Kelleyhouse DG, Stephenson RO, Larson DG (1992) The role of predation in limiting moose at low densities in Alaska and Yukon and implications for conservation. Wildl Monogr 120:1–59

    Google Scholar 

  • Haber GC (1977) Socio-ecological dynamics of wolves and prey in a subarctic ecosystem. PhD thesis, University of British Columbia

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 94:421–425

    Article  Google Scholar 

  • Halaj J, Wise DH (2001) Terrestrial trophic cascades: how much do they trickle? Am Nat 157:262–281

    Article  CAS  PubMed  Google Scholar 

  • Hayes RD, Harestad AS (2000) Wolf functional response and regulation of moose in the Yukon. Can J Zool 78:60–66

    Article  Google Scholar 

  • Heuze P, Schnitzler A, Klein F (2005) Is browsing the major factor of silver fir decline in the Vosges Mountains of France? For Ecol Manage 217:219–228

    Article  Google Scholar 

  • Hough AF (1949) Deer and rabbit browsing and available winter forage in Allegheny hardwood forests. J Wildl Manage 13:135–141

    Article  Google Scholar 

  • Jędrzejewski B, Jędrzejewski W (1998) Predation in vertebrate communities: the Białowieża primeval forest as a case study. Springer, New York

    Book  Google Scholar 

  • Kochetkov VV (2002) Factors determining moose population dynamics in the Central Forest Reserve. Alces Suppl 2:57–51

    Google Scholar 

  • Kojola I, Huitu O, Toppinen K, Heikura K, Heikkinen S, Ronkainen S (2004) Predation on European wild forest reindeer (Rangifer tarandus) by wolves (Canus lupus) in Finland. J Zool 263:229–235

    Article  Google Scholar 

  • Kolenosky GB (1972) Wolf predation on wintering deer in East-Central Ontario. J Wildl Manage 36:357–369

    Article  Google Scholar 

  • Laliberte AS, Ripple WJ (2004) Range contractions of North American carnivores and ungulates. BioScience 54:123–138

    Article  Google Scholar 

  • Larsen DG (1982) Moose inventory in the southwest Yukon. Alces 18:142–167

    Google Scholar 

  • Laundré JW, Hernández L, Altendorf KB (2001) Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, USA. Can J Zool 79:1401–1409

    Article  Google Scholar 

  • Leopold A, Sowls LK, Spencer DL (1947) A survey of over-populated deer ranges in the United States. J Wildl Manage 11:162–183

    Article  Google Scholar 

  • Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old growth forests as global carbon sinks. Nature 455:213–215

    Article  CAS  PubMed  Google Scholar 

  • Mech LD, Boitani L (eds) (2003) Wolves: behavior, ecology, and conservation. University of Chicago Press, Chicago

    Google Scholar 

  • Mech LD, Peterson RO (2003) Wolf-prey relations. In: Mech LD, Boitani L (eds) Wolves: behavior, ecology, and conservation. University of Chicago Press, Chicago, pp 131–160

    Chapter  Google Scholar 

  • Melis C, Jędrzejewsk B, Apollonio M, Bartoń KA, Jędrzejewski W, Linnell JDC, Kojola I, Kusak J, Adamic M, Ciuti S, Delehan I, Dykyy I, Krapinec K, Mattioli L, Sagaydak A, Samchuk N, Schmidt K, Shkvyrya M, Sidorovich VE, Zawadzka B, Zhyla S (2009) Predation has a greater impact in less productive environments: variation in roe deer, Capreolus capreolus, population density across Europe. Global Ecol Biogeogr 18:724–734

    Article  Google Scholar 

  • Messier F (1994) Ungulate population models with predation: a case study with the North American moose. Ecology 75:478–488

    Article  Google Scholar 

  • Michael ED (1992) Impact of deer browsing on regeneration of balsam fir in Canaan Valley, West Virginia. North J Appl For 9:89–90

    Google Scholar 

  • Miller B, Dugelby B, Foreman D, Martinez del Rio CR, Noss M, Phillips R, Reading ME, Terborgh Soulé J, Willcox L (2001) The importance of large carnivores to healthy ecosystems. Endang Spec Update 18:202–210

    Google Scholar 

  • Oksanen L (1992) Evolution of exploitation ecosystems. I. Predation, foraging ecology and population dynamics in herbivores. Evol Ecol 6:15–33

    Article  Google Scholar 

  • Oksanen L, Fretwell SD, Arruda J, Niemela P (1981) Exploitation ecosystems in gradients of primary productivity. Am Nat 118:240–261

    Article  Google Scholar 

  • Orians GH, Cochran PA, Duffield JW, Fuller TK, Gutierrez RJ, Hanemann WM (1997) Wolves, bears, and their prey in Alaska: biological and social challenges in wildlife management. National Academy Press, Washington, DC, p 207

    Google Scholar 

  • Palmer SCF, Truscott AM (2003) Seasonal habitat use and browsing by deer in Caledonian pinewoods. For Ecol Manage 174:149–166

    Article  Google Scholar 

  • Peterson RO (2007) The wolves of Isle Royale: a broken balance. University of Michigan Press, Ann Arbor, p 192

    Google Scholar 

  • Peterson RO, Woolington JD, Bailey TN (1984) Wolves of the Kenai Peninsula, Alaska. Wildlife Monogr 88

  • Peterson RO, Vucetich JA, Page RE, Chouinard A (2003) Temporal and spatial aspects of predator–prey dynamics. Alces 39:215–232

    Google Scholar 

  • Pimlott DH, Shannon JA, Kolenosky GB (1969) The ecology of the timber wolf in Algonquin Provincial Park. Ontario Department of Lands and Forests Research Paper Wildlife No. 87, Toronto, Ontario, Canada

  • Polis GA (1999) Why are parts of the world green? Multiple factors control productivity and the distribution of green biomass. Oikos 86:3–15

    Article  Google Scholar 

  • Potvin F (1988) Wolf movements and population dynamics in Papineau–Labelle reserve, Quebec. Can J Zool 66:1266–1273

    Article  Google Scholar 

  • Ray JC, Redford KH, Steneck RS, Berger J (eds) (2005) Large carnivores and the conservation of biodiversity. Island Press, Washington, DC, p 526

    Google Scholar 

  • Ripple WJ, Beschta RL (2004) Wolves and the ecology of fear: can predation risk structure ecosystems? BioScience 54:755–766

    Article  Google Scholar 

  • Ripple WJ, Beschta RL (2005) Linking wolves to plants: Aldo Leopold on trophic cascades. BioScience 55:613–621

    Article  Google Scholar 

  • Ripple WJ, Beschta RL (2006) Linking a cougar decline, trophic cascade, and catastrophic regime shift in Zion National Park. Biol Conserv 133:397–408

    Article  Google Scholar 

  • Ripple WJ, Beschta RL (2008) Trophic cascades involving cougar, mule deer, and black oaks in Yosemite National Park. Biol Conserv 141:1249–1256

    Article  Google Scholar 

  • Ripple WJ, Beschta RL (2012) Trophic cascades in yellowstone: the first 15 years after wolf reintroduction. Biol Conserv 145:205–213

    Article  Google Scholar 

  • Ripple WJ, Rooney TP, Beschta RL (2010) Large predators, deer, and trophic cascades in the mid-latitudes. In: Terborgh J, Estes JA (eds) Trophic cascades. Island Press, Washington, DC, pp 141–161

    Google Scholar 

  • Ritchie EG, Elmhagen B, Glen AS, Letnic M, Ludwig G, McDonald RA (2012) Ecosystem restoration with teeth: what role for predators? Trends Ecol Evol, in press. doi:10.1016/j.tree.2012.01.001

  • Schmitz OJ, Hamback PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: a review of the effects of carnivore removal on plants. Am Nat 155:141–153

    Article  PubMed  Google Scholar 

  • Schreiner EG, Krueger KA, Houston DB, Happe PJ (1996) Understory patch dynamics and ungulate herbivory in old-growth forests of Olympic National Park, Washington. Can J For Res 26:255–265

    Article  Google Scholar 

  • Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J, McHugh K, Hiraldo F (2008) Top predators as conservation tools: ecological rationale, assumptions and efficacy. Annu Rev Ecol Syst 39:1–19

    Article  Google Scholar 

  • Singer FJ, Dalle-Molle J (1985) The Denali ungulate-predator system. Alces 21:339–358

    Google Scholar 

  • Soulé ME, Estes JE, Berger J, del Rio CM (2003) Ecological effectiveness: conservation goals for interactive species. Conserv Biol 17:1238–1250

    Article  Google Scholar 

  • Stoeckeler JH, Strothmann RO, Krefting LW (1957) Effect of deer browsing on reproduction in the northern hardwood-hemlock type in northeastern Wisconsin. J Wildl Manage 21:75–80

    Article  Google Scholar 

  • Suominen O (1999) Impact of cervid browsing and grazing on the terrestrial gastropod fauna in the boreal forests of Fennoscandia. Ecography 22:651–658

    Article  Google Scholar 

  • Terborgh J, Estes JA (eds) (2010) Trophic cascades: predators, prey, and the changing dynamics of nature. Island Press, Washington, DC, p 464

    Google Scholar 

  • Terborgh J, Estes JA, Paquet P, Ralls K, Boyd-Heigher D, Miller BJ, Noss RF (1999) The role of top carnivores in regulating terrestrial ecosystems. In: Soulé M, Terborgh J (eds) Continental conservation: scientific foundations of regional reserve networks. Island Press, Washington, DC, pp 39–64

    Google Scholar 

  • Terborgh J, Lopez L, Nunez P, Rao M, Shahabuddin G, Riveros M, Ascanio R, Lambert TD, Adler GH, Balbas L (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926

    Article  CAS  PubMed  Google Scholar 

  • Trumbull VL, Zielinski EJ, Aharrah EC (1989) The impact of deer browsing on the Allegheny forest type. North J Appl For 6:162–165

    Google Scholar 

  • Van Ballenberghe V (1987) Effects of predation on moose numbers: a review of recent North American studies. Swedish Wildl Res Suppl 1:431–460

    Google Scholar 

  • Welsh DA, Morrison KP, Oswald K, Thomas ER (1980) Winter utilization of habitat by moose in relation to forest harvesting. Proc North Am Moose Conf Workshop 16:398–428

    Google Scholar 

  • Wilmers CC, Post ES, Peterson RO, Vucetich JA (2006) Disease mediated switch from top-down to bottom-up control exacerbates climatic effects on moose population dynamics. Ecol Lett 9:383–389

    Article  PubMed  Google Scholar 

  • Woodroffe R, Ginsberg JR (2005) King of beasts? Evidence for guild redundancy among large mammalian carnivores. In: Ray JC, Redford KH, Steneck RS, Berger J (eds) Large carnivores and the conservation of biodiversity. Island Press, Washington, DC, pp 154–175

    Google Scholar 

  • Zager P, Beecham J (2006) The role of American black bears and brown bears as predators on ungulates in North America. Ursus 17:95–108

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Hollenbeck, J. Leniham, C. Melis, L. Painter, and A. Souther for providing assistance on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Ripple.

Additional information

Communicated by C. Gortázar

Appendix 1

Appendix 1

Table 1 Locations, species, densities of cervids and wolves, predator present/absent, NPP, and plant damage for 42 sites used in analysis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ripple, W.J., Beschta, R.L. Large predators limit herbivore densities in northern forest ecosystems. Eur J Wildl Res 58, 733–742 (2012). https://doi.org/10.1007/s10344-012-0623-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10344-012-0623-5

Keywords

Navigation