Skip to main content
Log in

Assessment of ECMWF-derived tropospheric delay models within the EUREF Permanent Network

  • Original article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

The Global Positioning System (GPS) observations from the EUREF Permanent Network (EPN) are routinely analyzed by the EPN analysis centers using a tropospheric delay modeling based on standard pressure values, the Niell Mapping Functions (NMF), a cutoff angle of 3° and down-weighting of low elevation observations. We investigate the impact on EPN station heights and Zenith Total Delay (ZTD) estimates when changing to improved models recommended in the updated 2003 International Earth Rotation and Reference Systems Service (IERS) Conventions, which are the Vienna Mapping Functions 1 (VMF1) and zenith hydrostatic delays derived from numerical weather models, or the empirical Global Mapping Functions (GMF) and the empirical Global Pressure and Temperature (GPT) model. A 1-year Global Positioning System (GPS) data set of 50 regionally distributed EPN/IGS (International GNSS Service) stations is processed. The GPS analysis with cutoff elevation angles of 3, 5, and 10° revealed that changing to the new recommended models introduces biases in station heights in the northern part of Europe by 2–3 mm if the cutoff is lower than 5°. However, since large weather changes at synoptic time scales are not accounted for in the empirical models, repeatability of height and ZTD time series are improved with the use of a priori Zenith Hydrostatic Delays (ZHDs) derived from numerical weather models and VMF1. With a cutoff angle of 3°, the repeatability of station heights in the northern part of Europe is improved by 3–4 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DORIS:

Doppler Orbit determination and Radiopositioning Integrated on Satellite

EPN:

EUREF Permanent Network

GMF:

Global Mapping Functions

GNSS:

Global Navigation Satellite System

GPS:

Global Positioning System

GPT:

Global Pressure and Temperature

IERS:

International Earth rotation and Reference systems Service

IGS:

International GNSS Service

ITRF:

International Terrestrial Reference Frame

NMF:

Niell Mapping Functions

SPT:

Standard Pressure and Temperature

STD:

Slant Total Delay

VLBI:

Very Long Base Interferometry

VMF1:

Vienna Mapping Functions 1

VZHD:

Vienna Zenith Hydrostatic Delay

ZHD:

Zenith Hydrostatic Delay

ZTD:

Zenith Total Delay

ZWD:

Zenith Wet Delay

References

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112:B09401. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Berg H (1948) Allgemeine Meteorologie. Duemmler, Bonn

    Google Scholar 

  • Boehm J, Schuh H (2004) Vienna mapping functions in VLBI analyses. Geophys Res Lett 31:L01603. doi:10.1029/2003GL018984

    Article  Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006a) Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304. doi:10.1029/2005GL025546

    Article  Google Scholar 

  • Boehm J, Werl B, Schuh H (2006b) Troposphere mapping functions for GPS and very long baseline interferometry from European center for medium-range weather forecasts operational analysis data. J Geophys Res 111:B02406. doi:10.1029/2005JB003629

    Article  Google Scholar 

  • Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod. doi: 10.1007/s00190-007-0135-3

  • Boehm J, Heinkelmann R, Schuh H (2009) Neutral atmosphere delays: empirical models versus discrete time series from numerical weather data. In: Proceedings of the Geod. Ref. Frame (GRF) 2006 meeting, Munich (in press)

  • Dow J, Neilan R, Gendt G (2005) The International GPS Service (IGS): celebrating the 10th anniversary and looking to the next decade. Adv Space Res 36(3):320–326. doi:10.1016/j.asr.2005.05.125

    Article  Google Scholar 

  • Herring TA, King RW, McKlusky SC (2006) Reference manual for the GAMIT GPS software, release, 10.3., Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Boston, USA, p 182

  • Kenyeres A, Bruyninx C (2004) Monitoring of the EPN coordinate time series for improved reference frame maintenance. GPS Solutions 8(4):200–209

    Article  Google Scholar 

  • Kouba J (2007) Implementation and testing of the gridded Vienna mapping function 1 (VMF1). J. Geod. doi: 10.1007/s00190-007-0170-0

  • Kouba J (2009) Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analysis. J Geod. doi: 10.1007/s00190-008-0229-6

  • McCarthy DD, Petit G (eds) (2004) IERS Conventions (2003), IERS Technical Note No. 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany

  • Niell AE (1996) Global mapping functions for the atmospheric delay at radio wavelengths. J Geophys Res 101:3227–3246

    Article  Google Scholar 

  • Niell AE (2000) Improved atmospheric mapping functions for VLBI and GPS. Earth Planet Space 52:699–702

    Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: Henriksen SW, Mancini A, Chovitz BH (eds) The use of artificial satellites for geodesy, Geophys. Monogr. Ser. 15, AGU, Washington, pp 247–251

  • Santerre R (1991) Impact of GPS sky distribution. Manuscripta Geodaetica 16(1):28–53

    Google Scholar 

  • Schmid R, Steigenberger P, Gendt G, Maorong G, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod. doi: 10.1007/s00190-007-0148-y

  • Simmons AJ, Gibson JK (2000) The ERA-40 Project Plan, ERA-40 Proj. Rep. Ser. 1, Eur. Cent. for Medium-Range Weather Forecast. Reading, UK

    Google Scholar 

  • Steigenberger P, Boehm J, Tesmer V (2009) Comparison of GMF/GPT with VMF1/ECMWF and Implications for atmospheric loading. J Geod. doi: 10.1007/s00190-009-0311-8

  • Tesmer V, Boehm J, Heinkelmann R, Schuh H (2007) Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI. J. Geod. doi:10.1007/s00190-006-0126-9

  • Tregoning P, Herring TA (2006) Impact of a priori hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Lett 33:L23303. doi:10.1029/2006GL027706

    Article  Google Scholar 

  • Tregoning P, Van Dam T (2005) Atmospheric pressure loading corrections applied to GPS data at the observation level. Geophys Res Lett 32:L22310. doi:10.1029/2005GL024104

    Article  Google Scholar 

  • Wallace JM, Zhang Y, Lau K-H (1993) Structure and seasonality of interannual and interdecadal variability of geopotential height and temperature fields in the Northern Hemisphere troposphere. J Climate 6:2063–2082

    Article  Google Scholar 

Download references

Acknowledgments

We thank the IGS and the EUREF Permanent Network for providing GPS data. We also thank the staff of the Vienna University of Technology for providing data and R.W. King for his advice on the Gamit/GlobK v.10.34 software. We acknowledge the editors, two anonymous reviewers, and J. Nicolas for their constructive comments. F. Fund was financially supported by the “Ordre des Géomètres Expert” and the “Région des Pays de la Loire”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fund, F., Morel, L., Mocquet, A. et al. Assessment of ECMWF-derived tropospheric delay models within the EUREF Permanent Network. GPS Solut 15, 39–48 (2011). https://doi.org/10.1007/s10291-010-0166-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-010-0166-8

Keywords

Navigation