Skip to main content

Advertisement

Log in

A Modified Undecimated Discrete Wavelet Transform Based Approach to Mammographic Image Denoising

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

In this work, the authors present an effective denoising method to attempt reducing the noise in mammographic images. The method is based on using hierarchical correlation of the coefficients of discrete stationary wavelet transforms. The features of the proposed technique include iterative use of undecimated multi-directional wavelet transforms at adjacent scales. To validate the proposed method, computer simulations were conducted, followed by its applications to clinical mammograms. Mutual information originating from information theory was used as an evaluation measure for selection of an optimal wavelet basis function. We examined the performance of the proposed method by comparing it with the conventional undecimated discrete wavelet transform (UDWT) method in terms of processing time-consuming and image quality. Our results showed that with the use of the proposed method the computation time can be reduced to approximately 1/10 of the conventional UDWT method consumed. The results of visual assessment indicated that the images processed with the proposed UDWT method showed statistically significant superior image quality over those processed with the conventional UDWT method. Our research results demonstrate the superiority and effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Landis SH, Murray T, Bolden S, et al: Cancer statistics. CA Cancer J Clin 48(1): 6–29, 1998

    Article  PubMed  CAS  Google Scholar 

  2. American Cancer Society: Breast Cancer Facts & Figures 2009–2010. American Cancer Society. Atlanta, American Cancer Society, Inc: 1–36, 2009

  3. Adel M, Zuwala D, Rasigni M, et al: Filtering noise on mammographic phantom images using local contrast modification functions. Image Vision Comput 26(9): 1219-1229, 2008

    Article  Google Scholar 

  4. Sadaf A, Crystal P, Scaranelo A, et al: Performance of computer-aided detection applied to full-field digital mammography in detection of breast cancers. Eur J Radiol 77(3): 457-461, 2011

    Article  PubMed  Google Scholar 

  5. Tabar L, Yen MF, Vitak B, et al: Mammography service screening and mortality in breast cancer patients: 20 years follow-up before and after introduction of screening. Lancet 361(9367): 1405-1410, 2003

    Article  PubMed  Google Scholar 

  6. Dromain C, Thibault F, Muller S, et al: Dual-energy contrast-enhanced digital mammography: initial clinical results. Eur Radiol 21(3): 565-574, 2011

    Article  PubMed  Google Scholar 

  7. Wei J, Chan HP, Zhou C, et al: Computer-aided detection of breast masses: Four-view strategy for screen mammography. Med Phys 38(4): 1867-1876, 2011

    Article  PubMed  Google Scholar 

  8. Morton MJ, Whaley DH, Brandt KR, et al: Screening mammograms: Interpretation with computer-aided detection- prospective evaluation. Radiology 239(5): 375-383, 2006

    Article  PubMed  Google Scholar 

  9. Fenton JJ, Taplin SH, Carney PA, et al: Influence of computer-aided detection of performance of screen mammography. N Engl J Med 356(14): 1399-1409, 2007

    Article  PubMed  CAS  Google Scholar 

  10. Wang X, Li L, Xu W, et al: Improving performance of computer-aided detection of masses by incorporating bilateral mammographic density asymmetry: an assessment. Acad Radiol 19(3): 303-310, 2012

    Article  PubMed  Google Scholar 

  11. Samulski M, Hupse R, Boetes C, et al: Using computer-aided detection in mammography as a decision support. Eur Radiol 20(10): 2323-2330, 2010

    Article  PubMed  Google Scholar 

  12. Tourassi GD, Ike III R, Singh S, et al: Evaluating the effect of image preprocessing on an information-theoretic CAD system in mammography. Acad Radiol 15(5): 626-634, 2008

    Article  PubMed  Google Scholar 

  13. Mencattini A, Salmeri M, Rabottino G, et al: Metrological characterization of a CADx system for the classification of breast masses in mammograms. IEEE Trans on Instr and Meas 59: 2792-2799, 2010

    Article  Google Scholar 

  14. Mencattini A, Salmeri M: Metrological assessment of a CAD system for the early diagnosis of breast cancer in digital mammography. In: Mammography –Recent Advances. InTech, Mar. 2012, pp. 293–320

  15. Baydush AH, Catarious DM, Lo JY, et al: Incorporation of a Laguerre-Gauss channelized hotelling observer for false-positive reduction in a mammographic mass CAD system. J Digit Imaging 20:196-202, 2007

    Article  PubMed  Google Scholar 

  16. Camilus KS, Govindan VK, Sathidevi PS: Computer-aided identification of the pectoral muscle in digitized mammograms. J Digit Imaging 23: 562-580, 2010

    Article  PubMed  Google Scholar 

  17. Matheus BRN, Schiabel H: Online mammographic images database for development and comparison of CAD schemes. J Digit Imaging 24: 500-506, 2011

    Article  PubMed  Google Scholar 

  18. Bozek J, Mustra M, Delac K, et al: A survey of image processing algorithms in digital mammography. Studies in computational intelligence 231: 631-657, 2009

    Article  Google Scholar 

  19. Zanca F, Jacobs J, Ongeval CV, et al: Evaluation of clinical image processing algorithms used in digital mammography. Med Phys 36(3): 765-775, 2009

    Article  PubMed  Google Scholar 

  20. Scharcanski J, Jung CR: Denoising and enhancing digital mammographic images for visual screening. Comput Med Imaging Graphics 30(4): 243-254, 2006

    Article  Google Scholar 

  21. Zhang X, Xie H: Mammograms enhancement and denoising using generalized Gaussian mixture model in nonsubsampled contourlet transform domain. Journal of Multimedia 4(6): 389-396, 2009

    Google Scholar 

  22. Jung CR, Scharcanski T: Wavelet transform approach to adaptive image denoising and enhancement. J Electron Imaging 13(2): 278–285, 2004

    Google Scholar 

  23. Kappadath SC, Shaw CC: Dual-energy digital mammography for calcification imaging: noise reduction techniques. Phys Med Biol 53(19): 5421–5443, 2008

    Article  PubMed  Google Scholar 

  24. Bouwman R, Young K, Lazzari B, et al: An alternative method for noise analysis using pixel variance as part of quality control procedures on digital mammography systems. Phys Med Biol 54(22): 6809–6822, 2009

    Article  PubMed  CAS  Google Scholar 

  25. Mayo P, Rodenas F, Verdu G: Comparing methods to denoise mammographic images. Proc of the 26th Annual Intl Conference of the Engineering on medicine and Biology Society. 1: 247–250, 2004

    CAS  Google Scholar 

  26. McLoughlin KJ, Bones PJ, Karssemeijer N: Noise equalization for detection of microcalcification clusters in direct digital mammogram images. IEEE Trans Med Imaging 23(3):313-320, 2004

    Article  PubMed  Google Scholar 

  27. Starck JL, Candes EJ, Donoho DL: The curvelet transform for image denoising. IEEE Trans Image Process 11(6): 670-684, 2002

    Article  PubMed  Google Scholar 

  28. Adel M, Zuwala D, Rasigni M, et al: Noise reduction on mammographic phantom images. Electronic Letters on Computer Vision and Image Analysis 5(4): 64-74, 2006

    Google Scholar 

  29. Mencattini M, Salmeri M, Lojacono R, et al: Mammographic images enhancement and denoising for breast cancer detection using dyadic wavelet processing. IEEE Trans Instrum Meas 57(7): 1422-1430, 2008

    Article  Google Scholar 

  30. Xu Y, Weaver JB, Healy DM, et al: Wavelet transform domain filters: A spatially selective noise filtration technique. IEEE Trans. Image Process 3(6): 747-758, 1994

    Article  PubMed  CAS  Google Scholar 

  31. Fodor IK, Kamath C: Denoising through wavelet shrinkage: an empirical study, J Electron Imaging 12 (1): 151-160, 2003

    Article  Google Scholar 

  32. Sampat MP, Whitman GJ, Bovic AC, et al: Comparison of algorithms to enhance spicules of speculated masses on mammography. J Digit Imaging 21: 9-17, 2008

    Article  PubMed  Google Scholar 

  33. Romualdo LCS, Vieira MAC, Schiabel H, et al: Mammographic imaging denoising and enhancement using the anscombe transformation, adaptive wiener filtering, and the modulation transfer function. J Digit Imaging (on line first) (doi:10.1007/s10278-012-9507-1)

  34. Ferreira CBR, Borges DL: Analysis of mammogram classification using a wavelet transform decomposition. Pattern Recognition Letters 24(7): 973-982, 2003

    Article  Google Scholar 

  35. Cho D, Bui TD, Chen G: Image denoising based on wavelet shrinkage using neighbor and level dependency. Int J Wavelets Multiresolut Inf Process 7: 299-311, 2009

    Article  Google Scholar 

  36. Gyaourove A, Kamath C, Fodor IK: Undecimated wavelet transforms for image de-noising. Report Lawrence Livermore National Laboratory 12: 1-12, 2002.

    Google Scholar 

  37. Fowler JE: The redundant discrete wavelet transform and additive noise. IEEE Signal Processing Letters 12(9): 629-632, 2005

    Article  Google Scholar 

  38. Starck JL, Fadili J, Murtagh F: The undecimated wavelet decomposition and its reconstruction. IEEE Trans Image Process 16(2): 297-309, 2007

    Article  PubMed  Google Scholar 

  39. Wang XY, Yang HY, Fu ZK: A new wavelet-based image denoising using undecimated discrete wavelet transform and least square support vector machine. Expert Systems with Applications 37(10): 7040-7049, 2010

    Article  Google Scholar 

  40. Mencattini A, Salmeri M, Caselli F, et al: Subband variance computation of homoscedastic additive noise in discrete dyadic wavelet transform. Int J Wavelets Multiresolut Inf Process 6: 895-906, 2008

    Article  Google Scholar 

  41. Mencattini A, Rabottino G, Salmeri M, et al: Denoising and enhancement of mammographic images under the assumption of heteroscedastic additive noise by an optimal subband thresholding. Int J Wavelets Multiresolut Inf Process 8: 713-741, 2010

    Article  Google Scholar 

  42. Zhao P, Shang Z, Zhao C: Image denoising based on Gaussian and non-gaussian assumption. Int J Wavelets Multiresolut Inf Process 10: 1250014 (11 pages), 2012

    Google Scholar 

  43. Huang Z, Fang B, He X, et al: Image denoising based on the dyadic wavelet transform and improved threshold. Int J Wavelets Multiresolut Inf Process 7: 269-380, 2009

    Article  Google Scholar 

  44. Liu TT, Fraser-Smith AC: Detection of transient in 1/f noise with the undecimated discrete wavelet transform. IEEE Trans Signal Processing 48(5): 1458-1462, 2000

    Article  Google Scholar 

  45. Addison PS: The illustrated wavelet transform handbook. London: IOP, 2002

    Book  Google Scholar 

  46. Donoho D, Johnstone I: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3): 425-455, 1994

    Article  Google Scholar 

  47. Coifman RR, Donoho DL: Translation invariant de-noising. Lecture Notes in Statistics 103: 125-150, 1995

    Article  Google Scholar 

  48. Matsuyama E, Tsai DY, Lee Y: Mutual information-based evaluation of image quality with its preliminary application to assessment of medical imaging systems. J Electron Imaging 18(3): 033011, 1-11, 2009

    Google Scholar 

  49. Matsuyama E, Tsai DY, Lee Y, et al: Using mutual information to evaluate performance of medical imaging systems. Health 2(4): 279-285, 2010

    Article  Google Scholar 

  50. Singh BN, Tiwari AK: Optimal selection of wavelet basis function applied to ECG signal denoising. Digit Signal Process 16(3): 257-287, 2006

    Article  Google Scholar 

  51. Tsai DY, Lee Y, Matsuyama E: Information entropy measure for evaluation of image quality. J Digit Imaging 21(3 ):338-347, 2008

    Article  PubMed  Google Scholar 

  52. Japanese Society of Medical Imaging Technology. Available at: http://www.jamit.jp/cad-committe/caddbinfo. Accessed 11January 2012

  53. Scheffe H: The Analysis of variance. New York: John Wiley & Sons, 1959

    Google Scholar 

  54. Canavos GC, Koutrouvelis JA: An Introduction to the design & analysis of experiments. Pearson Prentice Hall, 2008 (eBook)

Download references

Acknowledgments

This research was supported in part by a Grant-in-Aid for Scientific Research (23602004) from the Japan Society for the Promotion of Sciences (JSPS). The authors also would like to thank the observers for their participation in visual evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du-Yih Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuyama, E., Tsai, DY., Lee, Y. et al. A Modified Undecimated Discrete Wavelet Transform Based Approach to Mammographic Image Denoising. J Digit Imaging 26, 748–758 (2013). https://doi.org/10.1007/s10278-012-9555-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-012-9555-6

Keywords

Navigation