Skip to main content
Log in

Coordination of leaf development via regulation of KNOX1 genes

  • JPR Symposium
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Class I KNOTTED1-LIKE HOMEOBOX (KNOX1) genes are expressed in the shoot apical meristem (SAM) to effect its formation and maintenance. KNOX1 genes are also involved in leaf shape control throughout angiosperm evolution. Leaves can be classified as either simple or compound, and KNOX1 expression patterns in leaf primordia are highly correlated with leaf shape; in most simple-leafed species, KNOX1 genes are expressed only in the SAM but not in leaf primordia, while in compound-leafed species they are expressed both in the SAM and leaf primordia. How can KNOX1 expression be maintained to a high degree in the SAM, but simultaneously be so variable in leaves? This dichotomy suggests that the processes of leaf and SAM development have been compartmentalized during evolution. Here, we introduce our findings regarding the regulation of expression of SHOOT MERISTEMLESS, a KNOX1 gene, together with a brief review of KNOX1 genes from an evolutionary viewpoint. We also present our findings regarding another aspect of KNOX1 regulation via a protein–protein interaction network involved in the natural variation in leaf shape. Both aspects of KNOX1 regulation could be utilized for fine-tuning leaf morphology during evolution without affecting the essential function of KNOX genes in the shoot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arber A (1950) The natural philosophy of plant form. Cambridge University Press, Cambridge

    Google Scholar 

  • Beerling DJ, Fleming AJ (2007) Zimmermann’s telome theory of megaphyll leaf evolution: a molecular and cellular critique. Curr Opin Plant Biol 10:4–12

    Article  CAS  PubMed  Google Scholar 

  • Bellaoui M, Pidkowich M, Samach A, Kushalappa K, Kohalmi S, Modrusan Z, Crosby W, Haughn G (2001) The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals. Plant Cell 13:2455–2470

    Article  CAS  PubMed  Google Scholar 

  • Bharathan G, Goliber T, Moore C, Kessler S, Pham T, Sinha N (2002) Homologies in leaf form inferred from KNOXI gene expression during development. Science 296:1858–1860

    Article  CAS  PubMed  Google Scholar 

  • Bhatt A, Etchells J, Canales C, Lagodienko A, Dickinson H (2004) VAAMANA–a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene 328:103–111

    Article  CAS  PubMed  Google Scholar 

  • Bird C, Stranger B, Dermitzakis E (2006) Functional variation and evolution of non-coding DNA. Curr Opin Genet Dev 16:559–564

    Article  CAS  PubMed  Google Scholar 

  • Burglin TR (1997) Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res 25:4173–4180

    Article  CAS  PubMed  Google Scholar 

  • Byrne M, Barley R, Curtis M, Arroyo J, Dunham M, Hudson A, Martienssen R (2000) Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408:967–971

    Article  CAS  PubMed  Google Scholar 

  • Champagne C, Sinha N (2004) Compound leaves: equal to the sum of their parts? Development 131:4401–4412

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Janssen B, Williams A, Sinha N (1997) A gene fusion at a homeobox locus: alterations in leaf shape and implications for morphological evolution. Plant Cell 9:1289–1304

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Banerjee A, Hannapel D (2004) The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J 38:276–284

    Article  CAS  PubMed  Google Scholar 

  • Cole M, Nolte C, Werr W (2006) Nuclear import of the transcription factor SHOOT MERISTEMLESS depends on heterodimerization with BLH proteins expressed in discrete sub-domains of the shoot apical meristem of Arabidopsis thaliana. Nucleic Acids Res 34:1281–1292

    Article  CAS  PubMed  Google Scholar 

  • Dermitzakis E, Reymond A, Lyle R, Scamuffa N, Ucla C, Deutsch S, Stevenson B, Flegel V, Bucher P, Jongeneel C, Antonarakis S (2002) Numerous potentially functional but non-genic conserved sequences on human chromosome 21. Nature 420:578–582

    Article  CAS  PubMed  Google Scholar 

  • Doyle J, Endress P (2000) Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int J Plant Sci 161:S121–S153

    Article  CAS  Google Scholar 

  • Hake S, Smith H, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of KNOX genes in plant development. Annu Rev Cell Dev Biol 20:125–151

    Article  CAS  PubMed  Google Scholar 

  • Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E (1996) The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84:735–744

    Article  CAS  PubMed  Google Scholar 

  • Harrison C, Corley S, Moylan E, Alexander D, Scotland R, Langdale J (2005) Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 434:509–514

    Article  CAS  PubMed  Google Scholar 

  • Hay A, Tsiantis M (2006) The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta. Nat Genet 38:942–947

    Article  CAS  PubMed  Google Scholar 

  • Inada D, Bashir A, Lee C, Thomas B, Ko C, Goff S, Freeling M (2003) Conserved noncoding sequences in the grasses. Genome Res 13:2030–2041

    Article  CAS  PubMed  Google Scholar 

  • Janssen B, Lund L, Sinha N (1998) Overexpression of a homeobox gene, LeT6, reveals indeterminate features in the tomato compound leaf. Plant Physiol 117:771–786

    Article  CAS  PubMed  Google Scholar 

  • Kaplinsky N, Braun D, Penterman J, Goff S, Freeling M (2002) Utility and distribution of conserved noncoding sequences in the grasses. Proc Natl Acad Sci USA 99:6147–6151

    Article  CAS  PubMed  Google Scholar 

  • Kim M, McCormick S, Timmermans M, Sinha N (2003) The expression domain of PHANTASTICA determines leaflet placement in compound leaves. Nature 424:438–443

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Koenig D, Kang J, Yoong F, Sinha N (2008) Natural variation in leaf morphology results from mutation of a novel KNOX gene. Curr Biol 18:672–677

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Kushalappa K, Godt D, Pidkowich M, Pastorelli S, Hepworth S, Haughn G (2007) The Arabidopsis BEL1-LIKE HOMEODOMAIN proteins SAW1 and SAW2 act redundantly to regulate KNOX expression spatially in leaf margins. Plant Cell 19:2719–2735

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Shuai B, Springer P (2003) The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial-abaxial patterning. Plant Cell 15:2241–2252

    Article  CAS  PubMed  Google Scholar 

  • Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S (1994) A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6:1859–1876

    Article  CAS  PubMed  Google Scholar 

  • Long J, Moan E, Medford J, Barton M (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  CAS  PubMed  Google Scholar 

  • Magnani E, Hake S (2008) KNOX lost the OX: the Arabidopsis KNATM gene defines a novel class of KNOX transcriptional regulators missing the homeodomain. Plant Cell 20:875–887

    Article  CAS  PubMed  Google Scholar 

  • Muehlbauer G, Fowler J, Girard L, Tyers R, Harper L, Freeling M (1999) Ectopic expression of the maize homeobox gene Liguleless3 alters cell fates in the leaf. Plant Physiol 119:651–662

    Article  CAS  PubMed  Google Scholar 

  • Muller J, Wang Y, Franzen R, Santi L, Salamini F, Rohde W (2001) In vitro interactions between barley TALE homeodomain proteins suggest a role for protein–protein associations in the regulation of Knox gene function. Plant J 27:13–23

    Article  CAS  PubMed  Google Scholar 

  • Nagasaki H, Sakamoto T, Sato Y, Matsuoka M (2001) Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15. Plant Cell 13:2085–2098

    Article  CAS  PubMed  Google Scholar 

  • Nishimura A, Tamaoki M, Sato Y, Matsuoka M (1999) The expression of tobacco knotted1-type class 1 homeobox genes correspond to regions predicted by the cytohistological zonation model. Plant J 18:337–347

    Article  CAS  PubMed  Google Scholar 

  • Nurmberg P, Knox K, Yun B, Morris P, Shafiei R, Hudson A, Loake G (2007) The developmental selector AS1 is an evolutionarily conserved regulator of the plant immune response. Proc Natl Acad Sci USA 104:18795–18800

    Article  CAS  PubMed  Google Scholar 

  • Ori N, Eshed Y, Chuck G, Bowman J, Hake S (2000) Mechanisms that control KNOX gene expression in the Arabidopsis shoot. Development 127:5523–5532

    CAS  PubMed  Google Scholar 

  • Parnis A, Cohen O, Gutfinger T, Hareven D, Zamir D, Lifschitz E (1997) The dominant developmental mutants of tomato, Mouse-ear and Curl, are associated with distinct modes of abnormal transcriptional regulation of a Knotted gene. Plant Cell 9:2143–2158

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger R, Becraft P, Hake S, Freeling M (1995) Ectopic expression of the knox homeo box gene rough sheath1 alters cell fate in the maize leaf. Genes Dev 9:2292–2304

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger R, Tsiantis M, Freeling M, Langdale J (1998) The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development 125:2857–2865

    CAS  PubMed  Google Scholar 

  • Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y (2001) The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128:1771–1783

    CAS  PubMed  Google Scholar 

  • Siepel A, Bejerano G, Pedersen J, Hinrichs A, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier L, Richards S, Weinstock G, Wilson R, Gibbs R, Kent W, Miller W, Haussler D (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15:1034–1050

    Article  CAS  PubMed  Google Scholar 

  • Sinha N, Williams R, Hake S (1993) Overexpression of the maize homeo box gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev 7:787–795

    Article  CAS  PubMed  Google Scholar 

  • Smith L, Greene B, Veit B, Hake S (1992) A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116:21–30

    CAS  PubMed  Google Scholar 

  • Smith H, Boschke I, Hake S (2002) Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proc Natl Acad Sci USA 99:9579–9584

    Article  CAS  PubMed  Google Scholar 

  • Theodoris G, Inada N, Freeling M (2003) Conservation and molecular dissection of ROUGH SHEATH2 and ASYMMETRIC LEAVES1 function in leaf development. Proc Natl Acad Sci USA 100:6837–6842

    Article  CAS  PubMed  Google Scholar 

  • Thomas J, Touchman J, Blakesley R, Bouffard G, Beckstrom-Sternberg S, Margulies E, Blanchette M, Siepel A, Thomas P, McDowell J, Maskeri B, Hansen N, Schwartz M, Weber R, Kent W, Karolchik D, Bruen T, Bevan R, Cutler D, Schwartz S, Elnitski L, Idol J, Prasad A, Lee-Lin S, Maduro V, Summers T, Portnoy M, Dietrich N, Akhter N, Ayele K, Benjamin B, Cariaga K, Brinkley C, Brooks S, Granite S, Guan X, Gupta J, Haghighi P, Ho S, Huang M, Karlins E, Laric P, Legaspi R, Lim M, Maduro Q, Masiello C, Mastrian S, McCloskey J, Pearson R, Stantripop S, Tiongson E, Tran J, Tsurgeon C, Vogt J, Walker M, Wetherby K, Wiggins L, Young A, Zhang L, Osoegawa K, Zhu B, Zhao B, Shu C, De Jong P, Lawrence C, Smit A, Chakravarti A, Haussler D, Green P, Miller W, Green E (2003) Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424:788–793

    Article  CAS  PubMed  Google Scholar 

  • Thomas B, Rapaka L, Lyons E, Pedersen B, Freeling M (2007) Arabidopsis intragenomic conserved noncoding sequence. Proc Natl Acad Sci USA 104:3348–3353

    Article  CAS  PubMed  Google Scholar 

  • Timmermans M, Hudson A, Becraft P, Nelson T (1999) ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 284:151–153

    Article  CAS  PubMed  Google Scholar 

  • Tsiantis M, Schneeberger R, Golz J, Freeling M, Langdale J (1999) The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 284:154–156

    Article  CAS  PubMed  Google Scholar 

  • Tsukaya H (2005) Leaf shape: genetic controls and environmental factors. Int J Dev Biol 49:547–555

    Article  PubMed  Google Scholar 

  • Uchida N, Townsley B, Chung K, Sinha N (2007) Regulation of SHOOT MERISTEMLESS genes via an upstream-conserved noncoding sequence coordinates leaf development. Proc Natl Acad Sci USA 104:15953–15958

    Article  CAS  PubMed  Google Scholar 

  • Vollbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241–243

    Article  CAS  PubMed  Google Scholar 

  • Vollbrecht E, Reiser L, Hake S (2000) Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development 127:3161–3172

    CAS  PubMed  Google Scholar 

  • Waites R, Selvadurai H, Oliver I, Hudson A (1998) The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93:779–789

    Article  CAS  PubMed  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O’Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Xu Y, Dong A, Sun Y, Pi L, Huang H (2003) Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development 130:4097–4107

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Iwasaki M, Machida C, Machida Y, Zhou X, Chua N (2008) βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev 22:2564–2577

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann W (1952) Main results of the telome theory. Palaeobotanist 1:456–470

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naoyuki Uchida or Neelima Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchida, N., Kimura, S., Koenig, D. et al. Coordination of leaf development via regulation of KNOX1 genes. J Plant Res 123, 7–14 (2010). https://doi.org/10.1007/s10265-009-0248-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-009-0248-2

Keywords

Navigation