Skip to main content

Advertisement

Log in

A numerical study of the dynamics of the wave-driven circulation within a fringing reef system

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The circulation driven by wave breaking, tides and winds within a fringing coral reef system (Ningaloo Reef) in Western Australia was investigated using the ocean circulation model ROMS two-way coupled to the wave model SWAN. Currents within the system were dominantly forced by wave breaking, with flow driven over the shallow reefs and towards the lagoon, which returned to the ocean through channels in the reef. Hindcast model simulations were compared against an extensive field dataset, revealing that the coupled wave–circulation model could accurately predict the waves and currents throughout this morphologically complex reef–lagoon system. A detailed momentum budget analysis showed that, over the reef, a dominant cross-shore balance was established between radiation stress gradients and a pressure (mean water level) gradient (similar to a beach). Within the lagoon, alongshore currents were primarily balanced by alongshore gradients in wave setup, which drove flow towards (and ultimately out) the channels. The importance of these wave-driven currents to Ningaloo Reef was quantified over a full seasonal cycle, during periods when wave and wind conditions significantly differed. These results showed that wave breaking still overwhelmingly dominated the circulation and flushing of Ningaloo Reef throughout the year, with winds playing an insignificant role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aagaard T (1997) Mean currents and sediment transport in a rip channel. Mar Geol 140(1–2):25

    Article  Google Scholar 

  • Apotsos A, Raubenheimer B, Elgar S, Guza RT, Smith JA (2007) Effects of wave rollers and bottom stress on wave setup. J Geophys Res 112(C2):C02003

    Article  Google Scholar 

  • Atkinson MJ, Bilger RW (1992) Effects of water velocity on phosphate uptake in coral reef-flat communities. Limnol Oceanogr 37(2):273

    Article  Google Scholar 

  • Atkinson M, Smith SV, Stroup ED (1981) Circulation in Enewetak Atoll Lagoon. Limnol Oceanogr 26(6):1074–1083

    Article  Google Scholar 

  • Battjes JA, Janssen JPFM (1979) Energy loss and set-up due to breaking of random waves. In: Proc. 16th Coastal Eng. Conf., Hamburg pp 563–587

  • Bellotti G (2004) A simplified model of rip currents systems around discontinuous submerged barriers. Coast Eng 51(4):323–335. doi:10.1016/j.coastaleng.2004.04.001

    Article  Google Scholar 

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions - 1. Model description and validation. J Geophys Res-Oceans 104(C4):7649–7666

    Article  Google Scholar 

  • Bosserelle C, Pattiaratchi C, Haigh I (2011) Inter-annual variability and longer-term changes in the wave climate of Western Australia between 1970 and 2009. Ocean Dynam. doi:10.1007/s10236-011-0487-3

  • Bowen AJ, Inman DL, Simmons VP (1968) Wave ‘set-down’ and set-up. J Geophys Res 73(8):2569

    Article  Google Scholar 

  • Coronado C, Candela J, Iglesias-Prieto R, Sheinbaum J, Pez ML, Ocampo-Torres FJ (2007) On the circulation in the Puerto Morelos fringing reef lagoon. Coral Reefs 26:149–163

    Article  Google Scholar 

  • Cowen RK, Castro LR (1994) Relation of coral reef fish larval distributions to island scale circulation around Barbados, West Indies. Bull Mar Sci 54:228–244

    Google Scholar 

  • Dalrymple RA (1978) Rip currents and their causes. Paper presented at the Coastal Engineering 1978 Germany

  • Dean RG, Dalrymple RA (1991) Water wave mechanics for engineers and scientists, vol 2. Advanced Series on Ocean Engineering, World Scientific, Singapore

    Book  Google Scholar 

  • Dollar SJ (1982) Wave stress and coral community structure in Hawaii. Coral Reefs 1(2):71

    Article  Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech 19(2):183

    Article  Google Scholar 

  • Falter JL, Atkinson MJ, Merrifield MA (2004) Mass-transfer limitation of nutrient uptake by a wave-dominated reef flat community. Limnol Oceanogr 49(5):1820–1831

    Article  Google Scholar 

  • Fischer HB, List JE, Koh CR, Imberger G, Brooks NH (1979) Mixing in inland and coastal waters, California, Academic Press

  • Gourlay MR, Colleter G (2005) Wave-generated flow on coral reefs—an analysis for two dimensional horizontal reef-tops with steep faces. Coast Eng 52:353–387

    Article  Google Scholar 

  • Grant WD, Madsen OS (1979) Combined wave and current interaction with a rough bottom. J Geophys Res-Oc Atm 84(NC4):1797–1808

    Article  Google Scholar 

  • Haidvogel DB (2008) Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System. J Comput Phys 227(7):3595

    Article  Google Scholar 

  • Haidvogel DB, Arango HG, Hedstrom K, Beckman A, Malanotte-Rizzoli P, Shchepetkin AF (2000) Model evaluation experiments in the North Atlantic Basin: simulation in nonlinear terrain following coordinates. Dynam Atmos Oceans 32:239–281

    Article  Google Scholar 

  • Haller MC, Dalrymple RA, Svendsen IA (2002) Experimental study of nearshore dynamics on a barred beach with rip channels. J Geophys Res 107:3061

    Article  Google Scholar 

  • Harii S, Kayanne H (2003) Larval dispersal, recruitment, and adult distribution of the brooding stony octocoral Heliopora coerulea on Ishigaki Island, southwest Japan. Coral Reefs 22(2):188

    Article  Google Scholar 

  • Hearn CJ (1999) Wave-breaking hydrodynamics within coral reef systems and the effect of changing relative sea level. J Geophys Res 104(C12):30007–30019

    Article  Google Scholar 

  • Hearn CJ, Parker IN (1988) Hydrodynamic processes on the Ningaloo coral reef. In: 6th International Coral Reef Symposium, Townsville, Australia

  • Hench JL, Leichter JJ, Monismith SG (2008) Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnol Oceanogr 53(6):2681–2694

    Article  Google Scholar 

  • Hoeke R, Storlazzi C, Ridd P (2011) Hydrodynamics of a bathymetrically complex fringing coral reef embayment: wave climate, in situ observations and wave prediction. J Geophysical Reseach-Oceans. doi:10.1029/2010JC006170

  • Kalnay EC, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437

    Article  Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, Hvd D, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82(2):247

    Article  Google Scholar 

  • Kunkel CM, Hallberg RW, Oppenheimer M (2006) Coral reefs reduce tsunami impact in model simulations. Geophys Res Lett 33(23):L23612

    Article  Google Scholar 

  • Longuet-Higgins MS, Stewart RW (1964) Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Res 11:529–562

    Google Scholar 

  • Lowe RJ, Falter JL, Bandet MD, Pawlak G, Atkinson MJ, Monismith SG, Koseff JR (2005) Spectral wave dissipation over a barrier reef. J Geophysical Res - Oceans 110:C04–C001. doi:010.1029/2004JC002711

    Google Scholar 

  • Lowe RJ, Falter JL, Monismith SG, Atkinson MJ (2009a) A numerical study of circulation in a coastal reef-lagoon system. J Geophysical Res-Oceans 114. doi:10.1029/2008jc005081

  • Lowe RJ, Falter JL, Monismith SG, Atkinson MJ (2009b) Wave-driven circulation of a coastal reef–lagoon system. J Phys Oceanogr 39(4):873–893

    Article  Google Scholar 

  • Lowe RJ, Hart C, Pattiaratchi CB (2010) Morphological constraints to wave-driven circulation in coastal reef-lagoon systems: a numerical study. J Geophys Res 115(c9):C09021

    Article  Google Scholar 

  • Lugo-Fernandez A, Roberts HH, Wiseman WJ (2004) Currents, water levels, and mass transport over a modern Caribbean coral reef: Tague Reef, St Croix, USVI. Cont Shelf Res 24(17):1989–2009

    Article  Google Scholar 

  • MacMahan JH, Thornton EB, Reniers AJHM (2006) Rip current review. Coast Eng 53:191–208

    Article  Google Scholar 

  • Madsen OS, Poon Y-K, Graber HC (1988) Spectral wave attenuation by bottom friction: Theory. In: Proc. 21st Coastal Engineering Conf., ASCE

  • Mei CC, Stiassnie M, Yue DK-P (2005) Theory and applications of ocean surface waves: nonlinear aspects. World Scientific, Singapore

    Google Scholar 

  • Mellor G (2003) The three-dimensional current and surface wave equations. J Phys Oceanogr 33(9):1978

    Article  Google Scholar 

  • Mellor G (2005) Some consequences of the three-dimensional current and surface wave equations. J Phys Oceanogr 35(11):2291

    Article  Google Scholar 

  • Mellor GL (2008) The depth-dependent current and wave interaction equations: a revision. J Phys Oceanogr 38(11):2587

    Article  Google Scholar 

  • Monismith SG (2007) Hydrodynamics of coral reefs. Annu Rev Fluid Mech 39:37–55

    Article  Google Scholar 

  • Monsen NE, Cloern JE, Lucas LV, Monismith SG (2002) A comment on the use of flushing time, residence time, and age as transport time scales. Limnol Oceanogr 47(5):1545–1553

    Article  Google Scholar 

  • Munk WH, Sargent MC (1954) Adjustment of Bikini Atoll to ocean waves. USGS Professional Paper 260-I (275–280)

  • Nielsen P (1992) Coastal bottom boundary layers and sediment transport, vol 4. Advanced series on ocean engineering, World Scientific, Singapore

    Book  Google Scholar 

  • Pattiaratchi C, Hegge B, Gould J, Eliot I (1997) Impact of sea-breeze activity on nearshore and foreshore processes in southwestern Australia. Cont Shelf Res 17(13):1539–1560. doi:10.1016/s0278-4343(97)00016-2

    Article  Google Scholar 

  • Reniers AJHM, Battjes JA (1997) A laboratory study of longshore currents over barred and non-barred beaches. Coast Eng 30(1–2):1–21. doi:10.1016/s0378-3839(96)00033-6

    Article  Google Scholar 

  • Seelig WN (1983) Laboratory study of reef-lagoon system hydraulics. J Waterw Port C-Asce 109(4):380–391

    Article  Google Scholar 

  • Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean model 9(4):347–404

    Article  Google Scholar 

  • Storlazzi CD, Ogston AS, Bothner MH, Field ME, Presto MK (2004) Wave- and tidally-driven flow and sediment flux across a fringing coral reef: Southern Molokai, Hawaii. Cont Shelf Res 24(12):1397–1419

    Article  Google Scholar 

  • Symonds G, Black KP, Young IR (1995) Wave-driven flow over shallow reefs. J Geophysical Res-Oceans C2:2639–2648

    Article  Google Scholar 

  • Taebi S, Lowe R, Pattiaratchi C, Ivey G, Symonds G (2011a) Modelling nearshore circulation in a fringing reef system: Ningaloo Reef, Australia. J Coast Res 2(SI 64):1200–1203

    Google Scholar 

  • Taebi S, Lowe RJ, Pattiaratchi CB, Ivey GN, Symonds G, Brinkman R (2011b) Nearshore circulation in a tropical fringing reef system. J Geophysical Res-Oceans 116(C2):C02016. doi:10.1029/2010JC006439

    Article  Google Scholar 

  • Tolman HL (2009) User manual and system documentation of WAVEWATCH III TM version 3.14. NOAA/NWS/NCEP

  • Von Arx WS (1954) Circulation systems in Bikini and Rongelap Lagoons. U.S. Geolofical Survey Professional Paper 260-B.265–273

  • Warner JC (2005) Incorporating nearshore process into ROMS, In: 2005 ROMS/TOMS Users Workshop. Scripps Institution of Oceanography, La Jolla, CA

    Google Scholar 

  • Warner JC, Sherwood CR, Signell RP, Harris CK, Arango HG (2008) Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput Geosci 34:1284–1306

    Article  Google Scholar 

  • Willmott CJ (1984) On the evaluation of model performance in physical geography. In: Gaile GA, Willmott CJ (eds) Spatial Statistics and Models. D. Reidel Publishing Company, pp 443–460

  • Woo M, Pattiaratchi C, Schroeder W (2006) Dynamics of the Ningaloo Current off Point Cloates, Western Australia. Mar Freshw Res 57:291–301

    Article  Google Scholar 

  • Wyatt AS, Lowe RJ, Humphries S, Waite AM (2010) Particulate nutrient fluxes over a fringing coral reef: relevant scales of phytoplankton production and mechanisms of supply. Mar Ecol Prog Ser 405:113–130

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by the Australian Research Council Discovery Grant # DP0770094 to RJL and a grant to the authors from the Western Australian Marine Science Institution (WAMSI Project 3.5). We are especially thankful to Richard Brinkman (Australian Institute of Marine Science) for supporting the field work in this project, as well as Cyprien Bosserelle (The University of Western Australia) for providing access to his WW3 wave model results. We also thank W. Klonowski and M. Lynch of Curtin University for providing access to processed hyperspectral bathymetry data for the region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheila Taebi.

Additional information

Responsible Editor: Chari Pattiaratchi

This article is part of the Topical Collection on Physics of Estuaries and Coastal Seas 2010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taebi, S., Lowe, R.J., Pattiaratchi, C.B. et al. A numerical study of the dynamics of the wave-driven circulation within a fringing reef system. Ocean Dynamics 62, 585–602 (2012). https://doi.org/10.1007/s10236-011-0514-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-011-0514-4

Keywords

Navigation