Skip to main content
Log in

Ab initio Computational Modeling of Glyphosate Analogs: Conformational Perspective

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A historical perspective on the application of conformational analysis to structure-based ligand design approach is presented. The application of isodensity molecular electrostatic potential surfaces with the conformational energy surfaces (CES) have allowed us to reach pertinent conclusions for aiding synthetic and biochemical studies. Here we illustrate such an application on the modeling of the potent analogs of an important, environmentally stringent herbicidal compound glyphosate by constructing conformational energy surfaces. The systems were modeled by substituting F, Cl, and NH— OH moiety to the position of pharmacophoric nitrogen center in glyphosate structure. All the calculations were thoroughly performed with ab initio MO theory at Hartree–Fock method using 3-21G(d) basis functions. On the basis of the results, we identified the bioactive conformations for N-fluoro-glyphosate, N-chloro-glyphosate, and N-hydroxyamino-glyphosate as (−38, 77), (−61, 111), and (−167, −169), respectively. Geometry optimization of certain selected conformations of these compounds using hybrid DFT method with 6–31+G(d) basis functions provides nearly equal values of φ and ψ. Moreover, the results indicate that the global minimum structures of N-fluoro and N-chloro analogs of glyphosate show cyclic conformation whereas the N-hydroxyamino-glyphosate global minimum structure shows spyrocyclic and zig-zag conformation. Also, the predicted bioactive conformation of N-hydroxyamino analog optimally overlaps with glyphosate backbone in EPSPS complex with 0.1 Å RMSD value. However, the other two compounds slightly deviate from the backbone of glyphosate with RMSD of 0.92 Å for N-fluoro-glyphosate and 0.83 Å for N-chloro-glyphosate. The linear N-hydroxyamino-glyphosate exhibits relatively more number of intermolecular hydrogen bond interactions as compared to the other two analogs. Further, comparison of CES of previously studied glyphosate analogs such as N-hydroxy-glyphosate (2.2 μM) and N-amino-glyphosate (0.61 μM) with the present systems reveals the order of activity as: N-hydroxyamino-glyphosate > N-fluoro-glyphosate > N-chloro-glyphosate based on CES flexibility. Also, the calculated heats of formation of N-fluoro-glyphosate, N-chloro-glyphosate, and N-hydroxyamino-glyphosate are −288, −209, and −288 kcal/mol, respectively, which clearly indicate that the N-hydroxyamino and N-fluoro analogs of glyphosate are thermodynamically more stable than N-amino-glyphosate (−278 kcal/mol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, D. A. Drug Discov. Today 2002, 7b, 1080.

    Article  Google Scholar 

  2. Leach, A. R. Molecular Modelling: Principles and Applications; Longman: Singapore, 1999.

    Google Scholar 

  3. Sull, T. J.; Chass, G. A.; Varro, A.; Papp, J. Gy. J. Mol. Struct. 2003, 623, 51.

    Google Scholar 

  4. Levy, Y.; Becker, O. M. Phys. Rev. Lett. 1998, 81, 1126.

    Article  Google Scholar 

  5. Nagy, P. I. Recent Res. Dev. Phys. Chem. 1999, 3, 1.

    Google Scholar 

  6. Kaliannan, P.; Ali, M. N.; Seethalakshmi, T.; Venuvanalingam, P. J. Mol. Struct. (Theochem) 2002, 618, 117.

    Google Scholar 

  7. Kaliannan, P.; Ali, M. N.; Venuvanalingam, P. Mol. Phys. 2003, 101, 3073.

    Article  Google Scholar 

  8. Ali, M. N.; Kaliannan, P.; Venuvanalingam, P. J. Mol. Struct. (Theochem) 2005, 714, 99.

  9. Franz, J. E.; Mao, M. K.; Sikorski, J. A. Glyphosate: A Unique Global Herbicide; American Chemical Society: Washington, DC, 1997.

    Google Scholar 

  10. Knowles, W. S.; Anderson, K. S.; Andrew, S. S.; Phillion, D. P.; Ream, J. E.; Johnson, K. A.; Sikorski, J. A. Bioorg. Med. Chem. Lett. 1993, 3, 2868.

    Article  Google Scholar 

  11. Sikorski, J. A.; Gruys, K. J. Acc. Chem. Res. 1997, 30, 2.

    Article  Google Scholar 

  12. Castellino, S.; Leo, G. C.; Sammons, R. D.; Sikorski, J. A. Biochemistry 1989, 28, 3856.

    Article  Google Scholar 

  13. Schwarz, L.; Holdsworth, C. I.; McCluskey, A.; Bowyer, M. C. Aust. J. Chem. 2004, 57(8), 759.

    Article  Google Scholar 

  14. French, A. D.; Kelterer, A.-M.; Johnson, G. P.; Dowd, M. K.; Cramer, C. J. J. Comput. Chem. 2000, 22, 65.

    Article  Google Scholar 

  15. Goldblum, A. Biochem. Biophys. Res. Commun. 1988, 157(2), 450.

    Article  PubMed  Google Scholar 

  16. Boyd, D. B. Drug Inf. J. 1983, 17, 121.

    Google Scholar 

  17. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheesman, J. R.; Zakrzewski, V. G.; Montgomery Jr., J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Murokuma, K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E.~S.; and Pople, J. A.; GAUSSIAN98, Gaussian, Inc., Pittsburgh, PA, 1998.

  18. Cramer, C. J.; Denmark, S. E.; Miller, P. C.; Dorow, R. L.; Swiss, K. A.; Wilson, S. A. J. Am. Chem. Soc. 1994, 116, 2437.

    Article  Google Scholar 

  19. Denmark, S. E.; Fand, C. J.; Denmark, S. E. Chem. Phys. Lett. 1987, 136, 7.

    Google Scholar 

  20. Cramer, C. J.; Dykstra, C. E.; Denmark, S. E. Chem. Phys. Lett. 1987, 136, 7.

    Article  Google Scholar 

  21. Schönbrunn, E.; Eschenburg, S.; Shuttleworth, W. A.; Schloss, J. V.; Amrhein, N.; Evans, J. N. S.; Kabsch, W. Proc. Natl. Acad. Sci., U.S.A. 2001, 98(4), 1376.

    Google Scholar 

  22. Segall, M. D.; Payne, M. C.; Boys, R. N. Mol. Phys. 1998, 3, 365.

    Google Scholar 

  23. Hannongbua, S.; Prasithichokekul, S.; Pungpo, P. J. Comp. Mol. Des. 2001, 15, 997.

    Article  Google Scholar 

  24. Schaefer, H. F., III. The Electronic Structure of Atoms and Molecules; Addision-Wesley: Reading, MA, 1972.

    Google Scholar 

  25. Csizmadia, I. G. Theory and Practice of MO Calculations on Organic Molecules; Elsevier: New York, 1976.

    Google Scholar 

  26. Veillard, A. In Quantum Mechanics of Molecular Conformations; Pullman, B., Ed.; Wiley: New York, 1973.

  27. Lowe, J. P. Science 1973, 179, 527.

    Google Scholar 

  28. Wiberg, K. Tetrahedron 1968, 24, 1083.

    Article  Google Scholar 

  29. (a) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 889. (b) Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211.

  30. Filizola, M.; Villar, H. O.; Loew, G. H. Bioorg. Med. Chem. 2001, 9, 69.

    Article  PubMed  Google Scholar 

  31. Tomasi, J. In Chemical Application of Atomic and Molecular Electrostatic Potentials; Politzer, P.; Truhlar, D., Eds.; Plenum: New York, 1981; pp. 257–294.

  32. Pepe, G.; Siri, D.; Reboul, J. P. J. Mol. Struct. (Theochem) 1992, 256, 175.

  33. Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, 1997.

    Google Scholar 

  34. Schaftenaar, G.; Noordik, J. H. J. Comput. Aided Mol. Des. 2000, 14, 123.

    Article  PubMed  Google Scholar 

  35. Marzabadi, M. R.; Gruys, K. J.; Pansegrau, P. D.; Walker, M. C.; Yuen, H. K.; Sikorski, J. A. Biochemistry 1996, 35, 4199.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kaliannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M.M.N., Kaliannan, P. & Venuvanalingam, P. Ab initio Computational Modeling of Glyphosate Analogs: Conformational Perspective. Struct Chem 16, 491–506 (2005). https://doi.org/10.1007/s10224-005-4615-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10224-005-4615-8

Keywords

Navigation