Skip to main content
Log in

Codependent VAR models and the pseudo-structural form

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

This paper investigates whether codependence restrictions can be uniquely imposed on VAR models via the so-called pseudo-structural form used in the literature. Codependence of order q is given if a linear combination of autocorrelated variables eliminates the serial correlation after q lags. Importantly, maximum likelihood estimation and likelihood ratio testing are only possible if the codependence restrictions can be uniquely imposed. Applying the pseudo-structural form, our study reveals that this is not generally the case, but that unique imposition is guaranteed in several important special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cubadda, G., Hecq, A.: On non-contemporaneous short-run comovements. Econ. Lett. 73, 389–397 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Engle, R.F., Kozicki, S.: Testing for common features. J. Bus. Econ. Stat. 11, 369–380 (1993)

    Google Scholar 

  • Franchi, M., Paruolo, P.: A characterization of vector autoregressive processes with common cyclical features. J. Econom. 163, 105–117 (2011)

    Article  MathSciNet  Google Scholar 

  • Gourieroux, C., Peaucelle, I.: (1988) Detecting a long-run relationship (with an application to the P.P.P. hypothesis). Working Paper 8902, CREMAP

  • Gourieroux, C., Peaucelle, I.: Series codependantes: application a l’hypothese de parité du pouvoir d’achat. Rev. d’Analyse Economique 68, 283–304 (1992)

    Google Scholar 

  • Lütkepohl, H.: New Introduction to Multiple Time Series Analysis. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  • Paruolo, P.: (2003) Common dynamics in I(1) VAR systems. Discussion Paper 2003/35. Department of Economics, University of Insubria

  • Schleicher, C.: Codependence in cointegrated autoregressive models. J. Appl. Econom. 22, 137–159 (2007)

    Article  MathSciNet  Google Scholar 

  • Tiao, G.C., Tsay, R.S.: Model specification in multivariate time series (with discussion). J. R. Stat. Soc. Ser. B 51, 157–213 (1989)

    MathSciNet  MATH  Google Scholar 

  • Trenkler, C., Weber, E.: (2012) Codependent VAR models and the pseudo-structural form. Working Paper ECON 12-10. Department of Economics, University of Mannheim

  • Trenkler, C., Weber, E.: Testing for codependence of non-stationary variables. Appl. Econ. 45, 1953–1964 (2013)

    Article  Google Scholar 

  • Vahid, F., Engle, R.F.: Common trends and common cycles. J. Appl. Econom. 8, 341–360 (1993)

    Google Scholar 

  • Vahid, F., Engle, R.F.: Codependent cycles. J. Econom. 80, 199–221 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Vahid, F., Issler, J.V.: The importance of common cyclical features in VAR analysis: a Monte-Carlo study. J. Econom. 109, 341–363 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to two anonymous referees, the editor, Kyusang Yu and participants of seminars at the Central Bank Norway, the Humboldt University Berlin, the Leibniz University Hannover, and the University of Mannheim for very helpful comments. Of course, all remaining errors are our own.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Trenkler.

Additional information

The research was supported by the Deutsche Forschungsgemeinschaft (DFG) through the SFB 884 ‘Political Economy of Reforms’.

Appendix: numerical examples

Appendix: numerical examples

Consider a three-dimensional version of the VAR in (1) of order three with

$$\begin{aligned} A_1&= \begin{pmatrix} 0.00&\quad 0.50&\quad 0.00\\ 0.00&\quad 0.40&\quad 0.00\\ a_{31,1}&\quad 0.00&\quad a_{33,1} \end{pmatrix}, \quad A_2= \begin{pmatrix} 0.00&\quad 0.36&\quad 0.00\\ 0.00&\quad 0.00&\quad 0.00\\ 0.00&\quad 0.00&\quad 0.00 \end{pmatrix}, \quad \mathrm{and}\\ A_3&= \begin{pmatrix} 0.00&\quad a_{12,3}&\quad 0.00\\ 0.00&\quad 0.00&\quad 0.00\\ 0.00&\quad 0.00&\quad 0.00 \end{pmatrix}. \end{aligned}$$

We assume \(a_{31,1} \ne 0\) and \(a_{33,1}\ne 0\). If \(a_{12,3}=-0.16\), then \(\delta _0 = (1 -\!1 \,0)^\prime \) is a codependence vector which generates codependence of order \(q=2\) with respect to \(y_t\). We have \(\gamma _0 = (1 -\!1\;0 \;0 \cdots 0)^\prime \), \(\gamma _1=\gamma _0^\prime \varvec{A} = (0 \; 0.1 \;0 \;0 \; 0.36 \; 0 \; 0 -\!0.16 \; 0)^\prime \), and \(\gamma _2=\gamma _1^\prime \varvec{A}=(0\;0.4\;0\;0 -\!0.16\;0\;0\;0\;0)^\prime \) with \(\gamma _2^\prime \varvec{A}=\varvec{0}\). Here, \(\varvec{A}\) is the corresponding companion matrix of the three-dimensional VAR(\(3\)). The vectors consisting of the first three elements of \(\gamma _1\) and \(\gamma _2\) represent the vectors labeled by \(\delta _1\) and \(\delta _2\) in Sect. 2.2. Obviously, \(\delta _1\) and \(\delta _2\) are linearly dependent meaning that the codependence vector \(\delta _0\) imposes additional constraints on the first two MA parameter matrices. Hence, the current setup represents an example for \(q = 2 < 3 = n\) with linear dependence of codependence and companion restrictions.

Let us extend the previous VAR to the lag order of four with

$$\begin{aligned} A_4 = \begin{pmatrix} 0.00&\quad -0.12&\quad 0.00\\ 0.00&\quad 0.00&\quad 0.00\\ 0.00&\quad 0.00&\quad 0.00 \end{pmatrix} \end{aligned}$$

and set \(a_{12,3} = 0.14\). Then, the codependence vector \(\delta _0 = (1 -\!1 \;0)^\prime \) is associated with a codependence order \(q=3\). We obtain \(\gamma _0 = (1 -\!1 \;0 \;0 \cdots 0)^\prime \), \(\gamma _1=\gamma _0^\prime \varvec{A} = (0 \; 0.1 \;0 \;0 \; 0.36 \; 0 \; 0 \; 0.14 \; 0 \; 0 -\!0.12 \; 0)^\prime \), and \(\gamma _2 = \gamma _1^\prime \varvec{A}= (0 \; 0.4 \;0 \;0 \; 0.14 \; 0 \; 0\) \( -\!0.12 \; 0 \cdots \; 0)^\prime \), \(\gamma _3 = \gamma _2^\prime \varvec{A}= (0 \; 0.3 \;0 \;0 -\!0.12 \; 0 \cdots \; 0)^\prime \) with \(\gamma _3^\prime \varvec{A} = \varvec{0}\). Now, \(\varvec{A}\) is the companion matrix related to the three-dimensional VAR(4). Obviously, the vectors \(\delta _1\), \(\delta _2\), and \(\delta _3\) linearly depend on each other such that we have an example for the case of \(q \ge n\) with linear dependence of codependence and companion restrictions.

We make two final remarks. First, the considered VAR processes are stable if \(|a_{33,1}|<1\). Second, the values of \(a_{31,1}\) and \(a_{33,1}\) do not affect the properties of codependence and linear dependence with respect to the considered VAR models.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trenkler, C., Weber, E. Codependent VAR models and the pseudo-structural form. AStA Adv Stat Anal 97, 287–295 (2013). https://doi.org/10.1007/s10182-012-0204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-012-0204-7

Keywords

Navigation