Skip to main content

Advertisement

Log in

Proctolin in the post-genomic era: new insights and challenges

  • Review
  • Published:
Invertebrate Neuroscience

Abstract

Complete understanding of how neuropeptides operate as neuromodulators and neurohormones requires integration of knowledge obtained at different levels of biology, including molecular, biochemical, physiological and whole organism studies. Major advances have recently been made in the understanding of the molecular basis of neuropeptide action in invertebrates by analysis of data generated from sequencing the genomes of several insect species, especially that of Drosophila melanogaster. This approach has quickly led to the identification of genes encoding: (1) novel neuropeptide sequences, (2) neuropeptide receptors and (3) peptidases that might be responsible for the processing and inactivation of neuropeptides. In this article, we review our current knowledge of the biosynthesis, receptor interaction and metabolic inactivation of the arthropod neuropeptide, proctolin, and how the analysis and exploitation of genome sequencing projects has provided new insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2
Fig. 3A–H, K–M
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams ME, O’Shea M (1983) Peptide cotransmitter at a neuromuscular junction. Science 221:286–289

    CAS  PubMed  Google Scholar 

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, et al (2000) Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Ames RS, Li Y, Sarau HM, Nuthulaganti P, Foley JJ, Ellis C, Zeng Z, Su K, Jurewicz AJ, Hertzberg RP, Bergsma DJ, Kumar C (1996) Molecular cloning and characterization of the human anaphylatoxin C3a receptor. J Biol Chem 271:20231–20234

    Article  CAS  PubMed  Google Scholar 

  • Anderson MS, Halpern ME, Keshishian H (1988) Identification of the neuropeptide transmitter proctolin in Drosophila larvae: characterization of muscle fiber-specific neuromuscular endings. J Neurosci 8:242–255

    CAS  PubMed  Google Scholar 

  • Baines RA, Lange AB, Downer RG (1990) Proctolin in the innervation of the locust mandibular closer muscle modulates contractions through the elevation of inositol trisphosphate. J Comp Neurol 297:479–486

    CAS  PubMed  Google Scholar 

  • Baines RA, Walther C, Hinton JM, Osborne RH, Konopinska D (1996) Selective activity of a proctolin analogue reveals the existence of two receptor subtypes. J Neurophysiol 75:2647–2650

    CAS  PubMed  Google Scholar 

  • Bishop CA, Wine JJ, O’Shea M (1984) Neuropeptide proctolin in postural motoneurons of the crayfish. J Neurosci 4:2001–2009

    CAS  PubMed  Google Scholar 

  • Blitz DM, Nusbaum MP (1999) Distinct functions for cotransmitters mediating motor pattern selection. J Neurosci 19:6774–6783

    CAS  PubMed  Google Scholar 

  • Blitz DM, Christie AE, Coleman MJ, Norris BJ, Marder E, Nusbaum MP (1999) Different proctolin neurons elicit distinct motor patterns from a multifunctional neuronal network. J Neurosci 19:5449–5463

    CAS  PubMed  Google Scholar 

  • Brezina V, Weiss KR (1997) Analysing the functional consequences of transmitter complexity. Trends Neurosci 20:538–543

    Article  CAS  PubMed  Google Scholar 

  • Brown BE (1975) Proctolin: a peptide transmitter candidate in insects. Life Sci 17:1241–1252

    Article  CAS  PubMed  Google Scholar 

  • Brown BE (1977) Occurrence of proctolin in six orders of insects. J Insect Physiol 23:861–864

    Article  CAS  Google Scholar 

  • Coleman MJ, Konstant PH, Rothman BS, Nusbaum MP (1994) Neuropeptide degradation produces functional inactivation in the crustacean nervous system. J Neurosci 14:6205–6216

    CAS  PubMed  Google Scholar 

  • Cook BJ, Holman GM (1979a) The action of proctolin and l-glutamic acid on the visceral muscles of the hindgut of the cockraoch Leucophaea maderae. Comp Biochem Physiol 64C:21–28

    CAS  Google Scholar 

  • Cook BJ, Holman GM (1979b) The pharmacology of insect visceral muscle. Comp Biochem Physiol 64C:183–190

    CAS  Google Scholar 

  • Cornell MJ, Williams TA, Lamango NS, Coates D, Corvol P, Soubrier F, Hoheisel J, Lehrach H, Isaac RE (1995) Cloning and expression of an evolutionary conserved single-domain angiotensin-converting enzyme from Drosophila melanogaster. J Biol Chem 270:13613–13619

    Article  CAS  PubMed  Google Scholar 

  • Davis NT, Velleman SG, Kingan TG, Keshishian H (1989) Identification and distribution of a proctolin-like neuropeptide in the nervous system of the gypsy moth, Lymantria dispar, and in other Lepidoptera. J Comp Neurol 283:71–85

    CAS  PubMed  Google Scholar 

  • De Bie I, Savaria D, Roebroek AJ, Day R, Lazure C, Van de Ven WJ, Seidah NG (1995) Processing specificity and biosynthesis of the Drosophila melanogaster convertases dfurin-1, dfurin-1-CRR, dfurin-1-X, and dfurin-2. J Biol Chem 270:1020–1028

    Article  PubMed  Google Scholar 

  • Egerod K, Reynisson E, Hauser F, Williamson M, Cazzamali G, Grimmelikhuijzen CJ (2003) Molecular identification of the first insect proctolin receptor. Biochem Biophys Res Commun 306:437–442

    Article  CAS  PubMed  Google Scholar 

  • Fricker LD (1991) Peptide processing exopeptidases: amino- and carboxypeptidases involved with peptide biosynthesis. In: Fricker LD (ed) Peptide biosynthesis and processing. CRC Press, Boca Raton, pp 199–229

  • Hewes RS, Taghert PH (2001) Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res 11:1126–1142

    Article  CAS  PubMed  Google Scholar 

  • Hinton JM, Osborne RH (1995) Proctolin receptor in the foregut of the locust, Schistocerca gregaria is linked to inositol phosphate second messenger system. J Insect Physiol 41:1027–1033

    Article  CAS  Google Scholar 

  • Hinton JM, Osborne RH, Bartosz-Bechowski H, Konopinska D (1996) Myotropic effects of proctolin analogues, modified in position 2 of the peptide chain, on the foregut of the locust, Schistocerca gregaria. J Insect Physiol 42:449–454

    Article  CAS  Google Scholar 

  • Hinton JM, Nejad M, Issberner JP, Hancock JT, Osborne RH (1998) Muscarinic acetylcholine and proctolin receptors in the foregut of the locust Schistocerca gregaria: role of inositol phosphates, protein kinase and calcium in second messenger effects. Insect Biochem Mol Biol 28:331–343

    Article  CAS  Google Scholar 

  • Holman GM, Cook BJ (1979) The analytical determination of proctolin by HPLC and its pharmacological action in the stable fly. Comp Biochem Physiol 62C:231–235

    CAS  Google Scholar 

  • Homberg U, Davis NT, Hildebrand JG (1991) Peptide-immunocytochemistry of neurosecretory cells in the brain and retrocerebral complex of the sphinx moth Manduca sexta. J Comp Neurol 303:35–52

    CAS  PubMed  Google Scholar 

  • Isaac RE (1987) Proctolin degradation by membrane peptidases from nervous tissues of the desert locust (Schistocerca gregaria). Biochem J 245:365–370

    CAS  PubMed  Google Scholar 

  • Johnson EC, Bohn LM, Barak LS, Birse RT, Nässel DR, Caron MG, Taghert PH (2003a) Identification of Drosophila neuropeptide receptors by G protein-coupled receptors-beta-arrestin2 interactions. J Biol Chem 278:52172–52178

    Article  CAS  PubMed  Google Scholar 

  • Johnson EC, Garczynski SF, Park D, Crim JW, Nässel DR, Taghert PH (2003b) Identification and characterization of a G protein-coupled receptor for the neuropeptide proctolin in Drosophila melanogaster. Proc Natl Acad Sci U S A 100:6198–6203

    Article  CAS  PubMed  Google Scholar 

  • Kaneko M, Hall JC (2000) Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J Comp Neurol 422:66–94

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Spalovska-Valachova I, Cho KH, Zitnanova I, Park Y, Adams ME, Zitnan D (2004) Corazonin receptor signaling in ecdysis initiation. Proc Natl Acad Sci U S A 101:6704–6709

    Article  CAS  PubMed  Google Scholar 

  • Kingan T, Titmus M (1983) Immunological detection of proctolin in arthropods. Comp Biochem Physiol 74C:75–78

    CAS  Google Scholar 

  • Kohout TA, Lefkowitz RJ (2003) Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol 63:9–18

    Article  CAS  PubMed  Google Scholar 

  • Konopinska D, Rosinski G (1999) Proctolin, an insect neuropeptide. J Pept Sci 5:533–546

    Article  CAS  PubMed  Google Scholar 

  • Lamango NS, Nachman RJ, Hayes TK, Strey A, Isaac RE (1997) Hydrolysis of insect neuropeptides by an angiotensin-converting enzyme from the housefly, Musca domestica. Peptides 18:47–52

    Article  CAS  PubMed  Google Scholar 

  • Lange AB (2002) A review of the involvement of proctolin as a cotransmitter and local neurohormone in the oviduct of the locust, Locusta migratoria. Peptides 23:2063–2070

    Article  CAS  PubMed  Google Scholar 

  • Lange AB, Orchard I, Barrett FM (1988) The presence and distribution of proctolin in the blood-feeding bug, Rhodnius prolixus. J Insect Physiol 34:379–386

    Article  CAS  Google Scholar 

  • Lee YS, Carthew RW (2003) Making a better RNAi vector for Drosophila: use of intron spacers. Methods 30:322–329

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Maeda T, Yamane T, Ohkubo I (2000) Alteration of rat dipeptidyl peptidase III by site-directed mutagenesis: cysteine(176) is a regulatory residue for the enzyme activity. Biochem Biophys Res Commun 276:553–558

    Article  CAS  PubMed  Google Scholar 

  • Lundquist CT, Nässel DR (1997) Peptidergic activation of locust dorsal unpaired median neurons: depolarization induced by locustatachykinins may be mediated by cyclic AMP. J Neurobiol 33:297–315

    Article  CAS  PubMed  Google Scholar 

  • Marder E, Hooper SL, Siwicki KK (1986) Modulatory action and distribution of the neuropeptide proctolin in the crustacean stomatogastric nervous system. J Comp Neurol 243:454–467

    CAS  PubMed  Google Scholar 

  • Marder E, Jorge-Rivera JC, Kilman V, Weimann JM (1997) Peptidergic modulation of synaptic transmission in a rhythmic system. Adv Organ Biol 2:213–233

    CAS  Google Scholar 

  • Matsas R, Rattray M, Kenny AJ, Turner AJ (1985) The metabolism of neuropeptides. Endopeptidase-24.11 in human synaptic membrane preparations hydrolyses substance. Biochem J 228:487–492

    CAS  PubMed  Google Scholar 

  • Mazzocco C, Puiroux J (2000) Purification of proctolin-binding proteins from the foregut of the insect Blaberus craniifer. Eur J Biochem 267:2252–2259

    Article  CAS  PubMed  Google Scholar 

  • Mazzocco C, Fukasawa KM, Raymond AA, Puiroux J (2001) Purification, partial sequencing and characterization of an insect membrane dipeptidyl aminopeptidase that degrades the insect neuropeptide proctolin. Eur J Biochem 268:4940–4949

    Article  CAS  PubMed  Google Scholar 

  • Mazzocco C, Fukasawa KM, Auguste P, Puiroux J (2003) Characterization of a functionally expressed dipeptidyl aminopeptidase III from Drosophila melanogaster. Eur J Biochem 270:3074–3082

    Article  CAS  PubMed  Google Scholar 

  • Mazzocco-Manneval C, Kuczer M, Konopinska D, Fournier B, Loughton BG, Puiroux J (1998) Pharmacological studies of proctolin receptors on foregut and hindgut of Blaberus craniifer. Peptides 19:1641–1651

    Article  CAS  PubMed  Google Scholar 

  • Mckelvy JF, Blumberg S (1986) Inactivation and metabolism of neuropeptides. Annu Rev Neurosci 9:415–434

    Article  CAS  PubMed  Google Scholar 

  • Messer AC, Brown MR (1995) Non-linear dynamics of neurochemical modulation of mosquito oviduct and hindgut contractions. J Exp Biol 198:2325–2336

    CAS  PubMed  Google Scholar 

  • Miranda CRE, Bitondi MMG, Simo ZLP (2003) Effect of proctolin on the egg-laying activity of Apis mellifora queens. J Apic Res 42:35–38

    CAS  Google Scholar 

  • Nässel DR (2002) Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Prog Neurobiol 68:1–84

    Article  PubMed  Google Scholar 

  • Nässel DR, O’Shea M (1987) Proctolin-like immunoreactive neurons in the blowfly central nervous system. J Comp Neurol 265:437–454

    PubMed  Google Scholar 

  • Nässel DR, Holmqvist BI, Moverus BJ (1989) Vasopressin- and proctolin-like immunoreactive efferent neurons in blowfly abdominal ganglia: development and ultrastructure. J Comp Neurol 283:450–463

    PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  Google Scholar 

  • Nusbaum MP (2002) Regulating peptidergic modulation of rhythmically active neural circuits. Brain Behav Evol 60:378–387

    Article  PubMed  Google Scholar 

  • Nusbaum MP, Marder E (1989) A modulatory proctolin-containing neuron (MPN). II. State-dependent modulation of rhythmic motor activity. J Neurosci 9:1600–1607

    CAS  PubMed  Google Scholar 

  • Orchard I, Belanger JH, Lange AB (1989) Proctolin: a review with emphasis on insects. J Neurobiol 20:470–496

    CAS  PubMed  Google Scholar 

  • O’Shea M, Adams ME (1981) Pentapeptide (proctolin) associated with an identified neuron. Science 213:567–569

    PubMed  Google Scholar 

  • Parks AL, Cook KR, Belvin M, Dompe NA, Fawcett R, Huppert K, Tan LR, Winter CG, Bogart KP, Deal JE, Deal-Herr ME, Grant D, Marcinko M, Miyazaki WY, Robertson S, Shaw KJ, Tabios M, Vysotskaia V, Zhao L, Andrade RS, Edgar KA, Howie E, Killpack K, Milash B, Norton A, Thao D, Whittaker K, Winner MA, Friedman L, Margolis J, Singer MA, Kopczynski C, Curtis D, Kaufman TC, Plowman GD, Duyk G, Francis-Lang HL (2004) Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat Genet 36:288–292

    Article  CAS  PubMed  Google Scholar 

  • Puiroux J, Loughton BG (1992) Degradation of the neuropeptide proctolin by membrane bound proteases of the hindgut and ovary of Locusta migratoria and the effects of different inhibitors. Arch Insect Biochem Physiol 19:193–202

    CAS  Google Scholar 

  • Puiroux J, Pedelaborde A, Loughton BG (1992a) Characterization of a proctolin binding site on locust hindgut membranes. Insect Biochem Mol Biol 22:547–551

    Article  CAS  Google Scholar 

  • Puiroux J, Pedelaborde A, Loughton BG (1992b) Characterization of a proctolin binding site on locust oviduct membranes. Insect Biochem Mol Biol 22:859–865

    Article  CAS  Google Scholar 

  • Puiroux J, Pedelaborde A, Loughton BG (1998) Partial purification of a putative proctolin receptor from the African migratory locust. Insect Biochem Mol Biol 28:887–893

    Article  Google Scholar 

  • Quistad GB, Adams ME, Scarborough RM, Carney RL, Schooley DA (1984) Metabolism of proctolin, a pentapeptide neurotransmitter in insects. Life Sci 34:569–576

    Article  CAS  PubMed  Google Scholar 

  • Roglic A, Prossnitz ER, Cavanagh SL, Pan Z, Zou A, Ye RD (1996) cDNA cloning of a novel G protein-coupled receptor with a large extracellular loop structure. Biochim Biophys Acta 1305:39–43

    Article  CAS  PubMed  Google Scholar 

  • Schwarz TL, Lee GM, Siwicki KK, Standaert DG, Kravitz EA (1984) Proctolin in the lobster: the distribution, release, and chemical characterization of a likely neurohormone. J Neurosci 4:1300–1311

    CAS  PubMed  Google Scholar 

  • Seidah NG, Chretien M (1999) Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res 848:45–62

    Article  CAS  PubMed  Google Scholar 

  • Shiga S, Davis NT, Hildebrand JG (2003) Role of neurosecretory cells in the photoperiodic induction of pupal diapause of the tobacco hornworm Manduca sexta. J Comp Neurol 462:275–285

    Article  PubMed  Google Scholar 

  • Sidyelyeva G, Fricker LD (2002) Characterisation of Drosophila carboxypeptidase D. J Biol Chem 277:49613–49620

    Article  CAS  PubMed  Google Scholar 

  • Siegmund T, Korge G (2001) Innervation of the ring gland of Drosophila melanogaster. J Comp Neurol 431:481–491

    Article  CAS  PubMed  Google Scholar 

  • Siviter RJ, Nachman RJ, Dani MP, Keen JN, Shirras AD, Isaac RE (2002) Peptidyl dipeptidases (Ance and Acer) of Drosophila melanogaster: major differences in the substrate specificity of two homologs of human angiotensin I-converting enzyme. Peptides 23:2025–2034

    Article  CAS  PubMed  Google Scholar 

  • Sliwowska J, Rosinski G, Nässel DR (2001) Cardioacceleratory action of tachykinin-related neuropeptides and proctolin in two coleopteran insect species. Peptides 22:209–217

    Article  CAS  PubMed  Google Scholar 

  • Smyth M, O’Cuinn G (1994) Dipeptidyl aminopeptidase III of guinea-pig brain: specificity for short oligopeptide sequences. J Neurochem 63:1439–1445

    CAS  PubMed  Google Scholar 

  • Starratt AN, Brown BE (1975) Structure of the pentapeptide proctolin, a proposed neurotransmitter in insects. Life Sci 17:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Starratt AN, Brown BE (1979) Analogs of the insect myotropic peptide proctolin: synthesis and structure-activity studies. Biochem Biophys Res Commun 90:1125–1130

    CAS  PubMed  Google Scholar 

  • Starratt AN, Steele RW (1984) In vivo inactivation of the insect neuropeptide proctolin in Periplaneta americana. Insect Biochem 14:97–102

    Article  CAS  Google Scholar 

  • Starratt AN, Steele RW (1985) In vitro inactivation of the insect neuropeptide proctolin in hemolymph from Periplaneta americana. Insect Biochem 15:511–519

    Article  Google Scholar 

  • Steiner DF (1991) The biosynthesis of biologically active peptides: a perspective. In: Fricker LD (ed) Peptide biosynthesis and processing. CRC Press, Boca Raton, pp 115

  • Sullivan RE (1979) A proctolin-like peptide in crab pericardial organs. J Exp Zool 210:543–552

    CAS  Google Scholar 

  • Tanaka Y, Hua Y, Roller L, Tanaka S (2002) Corazonin reduces the spinning rate in the silkworm, Bombyx mori. J Insect Physiol 48:707–714

    Article  CAS  PubMed  Google Scholar 

  • Tawfik AI, Tanaka S, De Loof A, Schoofs L, Baggerman G, Waelkens E, Derua R, Milner Y, Yerushalmi Y, Pener MP (1999) Identification of the gregarization-associated dark-pigmentotropin in locusts through an albino mutant. Proc Natl Acad Sci U S A 96:7083–7087

    Article  CAS  PubMed  Google Scholar 

  • Taylor CA, Winther AM, Siviter RJ, Shirras AD, Isaac RE, Nässel DR (2004) Identification of a proctolin preprohormone gene (Proct) of Drosophila melanogaster: Expression and predicted prohormone processing. J Neurobiol 58:379–391

    Article  CAS  PubMed  Google Scholar 

  • Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM, Buchholz R, Demsky M, Fawcett R, Francis-Lang HL, Ryner L, Cheung LM, Chong A, Erickson C, Fisher WW, Greer K, Hartouni SR, Howie E, Jakkula L, Joo D, Killpack K, Laufer A, Mazzotta J, Smith RD, Stevens LM, Stuber C, Tan LR, Ventura R, Woo A, Zakrajsek I, Zhao L, Chen F, Swimmer C, Kopczynski C, Duyk G, Winberg ML, Margolis J (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36:283–287

    Article  CAS  PubMed  Google Scholar 

  • Tohgo A, Choy EW, Gesty-Palmer D, Pierce KL, Laporte S, Oakley RH, Caron MG, Lefkowitz RJ, Luttrell LM (2003) The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J Biol Chem 278:6258–6267

    Article  CAS  PubMed  Google Scholar 

  • Veenstra JA (1989) Isolation and structure of corazonin, a cardioactive peptide from the American cockroach. FEBS Lett 250:231–234

    Article  CAS  PubMed  Google Scholar 

  • Washio H (1994) Effects of putative neurotransmitters on dorsal unpaired median neurons of cockroach (Periplaneta americana) thoracic ganglia. J Insect Physiol 40:841–847

    Article  CAS  Google Scholar 

  • Wise S, Davis NT, Tyndale E, Noveral J, Folwell MG, Bedian V, Emery IF, Siwicki KK (2002) Neuroanatomical studies of period gene expression in the hawkmoth, Manduca sexta. J Comp Neurol 447:366–380

    Article  CAS  PubMed  Google Scholar 

  • Wood DE, Nusbaum MP (2002) Extracellular peptidase activity tunes motor pattern modulation. J Neurosci 22:4185–4195

    CAS  PubMed  Google Scholar 

  • Zornik E, Paisley K, Nichols R (1999) Neural transmitters and a peptide modulate Drosophila heart rate. Peptides 20:45–51

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Biotechnology and Biological Sciences Research Council of the UK (R.E.I. and A.D.S., grants 24/S15562 and ISIS 1095), the Swedish Research Council (D.R.N., 621-2001-1605) and the Swedish Natural Science Research Council (D.R.N., BU 01820) for financial support. We also thank John Findlay, School of Biochemistry and Microbiology, University of Leeds, for valuable discussion of GPCR structure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Elwyn Isaac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaac, R.E., Taylor, C.A., Hamasaka, Y. et al. Proctolin in the post-genomic era: new insights and challenges. Invert Neurosci 5, 51–64 (2004). https://doi.org/10.1007/s10158-004-0029-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-004-0029-5

Keywords

Navigation