Skip to main content
Log in

Cold-Adapted Digestive Aspartic Protease of the Clawed Lobsters Homarus americanus and Homarus gammarus: Biochemical Characterization

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Aspartic proteinases in the gastric fluid of clawed lobsters Homarus americanus and Homarus gammarus were isolated to homogeneity by single-step pepstatin-A affinity chromatography; such enzymes have been previously identified as cathepsin D-like enzymes based on their deduced amino acid sequence. Here, we describe their biochemical characteristics; the properties of the lobster enzymes were compared with those of its homolog, bovine cathepsin D, and found to be unique in a number of ways. The lobster enzymes demonstrated hydrolytic activity against synthetic and natural substrates at a wider range of pH; they were more temperature-sensitive, showed no changes in the K M value at 4°C, 10°C, and 25°C, and had 20-fold higher k cat /K M values than bovine enzyme. The bovine enzyme was temperature-dependent. We propose that both properties arose from an increase in molecular flexibility required to compensate for the reduction of reaction rates at low habitat temperatures. This is supported by the fast denaturation rates induced by temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahsan MN, Watabe S (2001) Kinetic and structural properties of two isoforms of trypsin isolated from the viscera of Japanese anchovy, Engraulis japonicus. J Protein Chem 20:49–58

    Article  PubMed  CAS  Google Scholar 

  • Andreeva NS (1992) Some aspects of structural studies on aspartic proteinases. Scand J Clin Lab Invest 52:31–38

    Article  CAS  Google Scholar 

  • Aoki H, Ahsan MN, Watabe S (2003) Molecular cloning and functional characterization of crustapain: a distinct cysteine proteinase with unique substrate specificity from Northern shrimp Pandalus borealis. J Biochem 133:799–810

    Article  PubMed  CAS  Google Scholar 

  • Aoki H, Ahsan M, Watabe S (2004) Molecular and enzymatic properties of a cathepsin L-like proteinase with distinct substrate specificity from northern shrimp (Pandalus borealis). J Comp Physiol B 174:59–69

    Article  PubMed  CAS  Google Scholar 

  • Barrett AJ (1979) Cathepsin D: the lysosomal aspartic proteinase. CIBA Found Symp 79:37–50

    Google Scholar 

  • Barrett AJ, Rawlings ND, Woessner JF (1998) Proteolytic enzymes. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Academic, San Diego, pp 801–805

    Google Scholar 

  • Benes P, Vetvicka V, Fusek M (2008) Cathepsin D—many functions of one aspartic protease. Crit Rev Oncol Hematol 68:12–28

    Article  PubMed  Google Scholar 

  • Boldbaatar D, Sikasunge CS, Battsetseg B, Xuan X, Fujisaki K (2006) Molecular cloning and functional characterization of an aspartic protease from the hard tick Haemaphysalis longicornis. Insect Biochem Mol Biol 36:25–36

    Article  PubMed  CAS  Google Scholar 

  • Brindley PJ, Kalinna BH, Wong JYM, Bogitsh BJ, King LT, Smyth DJ, Verity CK, Abbenante G, Brinkworth RI, Fairlie DP, Smythe ML, Milburn PJ, Bielefeldt-Ohmann H, Zheng Y, McManus DP (2001) Proteolysis of human hemoglobin by schistosome cathepsin D. Mol Biochem Parasitol 112:103–112

    Article  PubMed  CAS  Google Scholar 

  • Brinkworth RI, Prociv P, Loukas A, Brindley PJ (2001) Hemoglobin-degrading, aspartic proteases of blood-feeding parasites. J Biol Chem 276:38844–38851

    Article  PubMed  CAS  Google Scholar 

  • Carginale V, Trinchella F, Capasso R, Parisia E (2004) Gene amplification and cold adaptation of pepsin in Antarctic fish: a possible strategy for food digestion at low temperature. Gene 336:195–205

    Article  PubMed  CAS  Google Scholar 

  • Cobb JS, Phillips BF (1980) The biology and management of lobsters. Academic, New York

    Google Scholar 

  • Córdova-Murueta JH, García-Carreño FL, Navarrete-del-Toro MDLA (2003) Digestive enzymes present in crustacean feces as a tool for biochemical, physiological, and ecological studies. J Exp Mar Biol Ecol 297:43–56

    Article  Google Scholar 

  • D'Amico S, Claverie P, Collins T, Georlette D, Gratia E, Hoyoux A, Meuwis M-A, Feller G, Gerday C (2002) Molecular basis of cold adaptation. Phil Trans Biol Sci 357:917–925

    Article  Google Scholar 

  • Davies DR (1990) The structure and function of the aspartic proteinases. Annu Rev Biophys Biophys Chem 19:189–215

    Article  PubMed  CAS  Google Scholar 

  • Delcroix M, Sajid M, Caffrey C, Lim K, Jan D, Hsieh I, Bahgat M, Dissous C, McKerrow J (2006) A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. J Biol Chem 281:39316–39329

    Article  PubMed  CAS  Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    Article  PubMed  CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  PubMed  CAS  Google Scholar 

  • Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C (1996) Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18:189–202

    Article  CAS  Google Scholar 

  • Fields PA (2001) Review: protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Physiol A Mol Integr Physiol 129:417–431

    Article  PubMed  CAS  Google Scholar 

  • Galgani F, Benyamin Y, van Wormhoudt A (1985) Purification, properties and immunoassay of trypsin from Penaeus japonicus. Comp Biochem Physiol B 81:447–452

    Article  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa J-P, Claverie P, Collins T, D'Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis MA, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107

    Article  PubMed  CAS  Google Scholar 

  • Goldberg DE, Slater AF, Beavis R, Chait B, Cerami A, Henderson GB (1991) Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease. J Exp Med 173:961–969

    Article  PubMed  CAS  Google Scholar 

  • Gudmundsdóttir Á, Pálsdóttir HM (2005) Atlantic cod trypsins: from basic research to practical applications. Mar Biotechnol 7:77–88

    Article  PubMed  Google Scholar 

  • Gui Z, Lee K, Kim B, Choi Y, Wei Y, Choo Y, Kang P, Yoon H, Kim I, Je Y, Seo S, Lee S, Guo X, Sohn H, Jin B (2006) Functional role of aspartic proteinase cathepsin D in insect metamorphosis. BMC Dev Biol 6:49–60

    Article  PubMed  Google Scholar 

  • Harrop SA, Prociv P, Brindley PJ (1996) Acasp, a gene encoding a cathepsin D-like aspartic protease from the hookworm Ancylostoma caninum. Biochem Biophys Res Commun 227:294–302

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Cortés P, Whitaker JR, García-Carreño FL (1997) Purification and characterization of chymotrypsin from Penaeus vannamei (Crustacea: Decapoda). J Food Biochem 21:497–514

    Article  Google Scholar 

  • Hernández-Cortés P, Cerenius L, García-Carreño FL, Soderhal K (1999) Trypsin from Pacifastacus leniusculus hepatopancreas: purification and cDNA cloning of the synthesized zymogen. Biol Chem 380:499–501

    Article  PubMed  Google Scholar 

  • Hofer R, Ladurner H, Gattringer A, Wieser W (1975) Relationship between the temperature preference of fishes, amphibians and reptiles, and the substrate affinities of their trypsins. J Comp Physiol B 99:345–355

    Article  CAS  Google Scholar 

  • Hu KJ, Leung PSC (2007) Food digestion by cathepsin L and digestion-related rapid cell differentiation in shrimp hepatopancreas. Comp Biochem Physiol 146B:69–80

    CAS  Google Scholar 

  • Khan AR, James MNG (1998) Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Prot Sci 7:815–836

    Article  CAS  Google Scholar 

  • Khan AR, Khazanovich-Bernstein N, Bergmann EM, James MNG (1999) Structural aspects of activation pathways of aspartic protease zymogens and viral 3 C protease precursors. Proc Natl Acad Sci USA 96:10968–10975

    Article  PubMed  CAS  Google Scholar 

  • Klein B, Sellos D, Van Wormhoudt A (1998) Genomic organisation and polymorphism of a crustacean trypsin multi-gene family. Gene 216:123–129

    Article  PubMed  CAS  Google Scholar 

  • Knight G, Barrett AJ (1976) Interaction of human cathepsin D with the inhibitor pepstatin. Biochem J 155:117–125

    PubMed  CAS  Google Scholar 

  • Laycock MV, Hirama T, Hasnain S, Watson D, Storer A (1989) Purification and characterization of a digestive cysteine proteinase from the American lobster (Homarus americanus). Biochem J 263:439–444

    PubMed  CAS  Google Scholar 

  • Le Boulay C, van Wormhoud A, Sellos D (1995) Molecular cloning and sequencing of two cDNAs encoding cathepsin L-related cysteine proteinases in the nervous system and in the stomach of the Norway lobster (Nephrops norvegicus). Comp Biochem Physiol B 111:353–359

    Article  PubMed  Google Scholar 

  • Le Boulay C, Sellos D, Van Wormhoudt A (1998) Cathepsin L gene organization in crustaceans. Gene 218:77–84

    Article  PubMed  Google Scholar 

  • Lee PG, Smith LL, Lawrence AL (1984) Digestive protease of Penaeus vannamei Boone: relationship between enzyme activity, size and diet. Aquaculture 42:225–239

    Article  CAS  Google Scholar 

  • Leiros HK, Willassen NP, Smalås AO (2000) Structural comparison of psychrophilic and mesophilic trypsins. Elucidating the molecular basis of cold-adaptation. Eur J Biochem 267:1039–1049

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto I, Asakura T, Ohmori T, Tamura K (2009) Cathepsin D-like aspartic proteinase occurring in a maize weevil, Sitophilus zeamais, as a candidate digestive enzyme. Biosci Biotechnol Biochem 73:2338–2340

    Article  PubMed  CAS  Google Scholar 

  • Metcalf P, Fusek M (1993) Two crystal structures for cathepsin D: the lysosomal targeting signal and active site. EMBO J 12:1293–1302

    PubMed  CAS  Google Scholar 

  • Muhlia-Almazan A, García-Carreño FL (2002) Influence of molting and starvation on the synthesis of proteolytic enzymes in the midgut gland of the white shrimp Penaeus vannamei. Comp Biochem Physiol B 133:383–394

    Article  PubMed  Google Scholar 

  • Mukhin V, Smirnova E, Novikov V (2007) Peculiarities of digestive function of proteinases in invertebrates—inhabitants of cold seas. J Evol Biochem Physiol 43:476–482

    Article  CAS  Google Scholar 

  • Navarrete del Toro MA, García-Carreño FL, Díaz LM, Celis-Guerrero L, Saborowski R (2006) Aspartic proteinases in the digestive tract of marine decapod crustaceans. J Exp Zool 305A:645–654

    Article  Google Scholar 

  • Padilha MHP, Pimentel AC, Ribeiro AF, Terra WR (2009) Sequence and function of lysosomal and digestive cathepsin D-like proteinases of Musca domestica midgut. Insect Biochem Mol Biol 39:782–791

    Article  PubMed  CAS  Google Scholar 

  • Pardesi SR, Dandekar SP, Jamdar SN, Harikumar P (2004) Identification and purification of an aspartic proteinase from human semen. Indian J Clin Biochem 19:84–90

    Article  PubMed  CAS  Google Scholar 

  • Perera E, Moyano FJ, Díaz M, Perdomo-Morales R, Montero-Alejo V, Alonso E, Carrillo O, Galich GS (2008) Polymorphism and partial characterization of digestive enzymes in the spiny lobster Panulirus argus. Comp Biochem Physiol B 150:247–254

    Article  PubMed  Google Scholar 

  • Pinho RT, Beltramini LM, Alves CR, De-Simone SG (2009) Trypanosoma cruzi: isolation and characterization of aspartyl proteases. Exp Parasitol 122:128–133

    Article  PubMed  CAS  Google Scholar 

  • Ranjit N, Zhan B, Hamilton B, Stenzel D, Lowther J, Pearson M, Gorman J, Hotez P, Loukas A (2009) Proteolytic degradation of hemoglobin in the intestine of the human hookworm Necator americanus. J Infect Dis 199:904–912

    Article  PubMed  CAS  Google Scholar 

  • Rojo L, Muhlia-Almazán A, Saborowski R, García Carreño FL (2010a) Aspartic cathepsin D endopeptidase contributes to extracellular digestion in clawed lobsters Homarus americanus and Homarus gammarus. Mar Biotechnol 12:696–707

    Article  PubMed  CAS  Google Scholar 

  • Rojo L, Sotelo-Mundo R, García-Carreño F, Gráf L (2010b) Isolation, biochemical characterization, and molecular modeling of American lobster digestive cathepsin D1. Comp Biochem Physiol B 157:394–400

    Article  PubMed  Google Scholar 

  • Sainz JC, García-Carreño FL, Cordova-Murueta J, Cruz-Hernández P (2004a) Whiteleg shrimp (Litopenaeus vannamei, Boone, 1931) isotrypsins: their genotype and modulation. J Exp Mar Biol Ecol 326:105–113

    Article  Google Scholar 

  • Sainz JC, García-Carreño FL, Sierra-Beltran A, Hernandez-Cortés P (2004b) Trypsin synthesis and storage as zymogen in the midgut gland of the shrimp Litopenaeus vannamei. J Crustacean Biol 24:266–273

    Article  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  PubMed  CAS  Google Scholar 

  • Simões I, Faro C (2004) Structure and function of plant aspartic proteinases. Eur J Biochem 271:2067–2075

    Article  PubMed  Google Scholar 

  • Simpson BK, Haard NF (1987) Cold-adapted enzymes from fish. In: Knorr D (ed) Food Biotechnology. Marcel Dekker, New York, pp 495–527

    Google Scholar 

  • Smalås AO, Heimstad ES, Hordvik A, Willassen NP, Male R (1994) Cold adaption of enzymes: structural comparison between salmon and bovine trypsins. Protein Struct Funct Genet 20:149–166

    Article  Google Scholar 

  • Sojka D, Franta Z, Horn M, Hajdusek O, Caffrey C, Mares M, Kopacek P (2008) Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases. Parasit Vectors 1:7–21

    Article  PubMed  Google Scholar 

  • Stoll VS, Blanchard JS (1990) Buffers: principles and practice. In: Burgess RR, Deutscher MP (eds) Methods in enzymology. Academic, New York, pp 24–38

    Google Scholar 

  • Suttiprapa S, Mulvenna J, Huong NT, Pearson MS, Brindley PJ, Laha T, Wongkham S, Kaewkes S, Sripa B, Loukas A (2009) Ov-APR-1, an aspartic protease from the carcinogenic liver fluke, Opisthorchis viverrini: functional expression, immunolocalization and subsite specificity. Int J Biochem Cell Biol 41:1148–1156

    Article  PubMed  CAS  Google Scholar 

  • Szecsi PB (1992) The aspartic proteases. Scand J Clin Lab Invest 52:5–22

    Article  CAS  Google Scholar 

  • Takahashi T, Tang J (1981) Cathepsin D from porcine and bovine spleen. In: Lorand L (ed) Methods in enzymology. Academic, New York, pp 565–581

    Google Scholar 

  • Williamson AL, Brindley PJ, Abbenante G, Prociv P, Berry C, Girdwood K, Pridchard DI, Fairlie DP, Hotez P, Dalton JP, Loukas A (2002) Cleavage of hemoglobin by hookworm cathepsin D aspartic proteases and its potential contribution to host specificity. FASEB J 16:1458–1460

    PubMed  CAS  Google Scholar 

  • Williamson AL, Brindley PJ, Abbenante G, Datu B, Prociv P, Berry C, Girdwood K, Pritchard DI, Fairlie DP, Hotez PJ, Zhan B, Loukas A (2003a) Hookworm aspartic protease, Na-APR-2, cleaves human hemoglobin and serum proteins in a host-specific fashion. J Infect Dis 187:484–494

    Article  PubMed  CAS  Google Scholar 

  • Williamson AL, Brindley PJ, Knox DP, Hotez PJ, Loukas A (2003b) Digestive proteases of blood-feeding nematodes. Trends Parasitol 19:417–423

    Article  PubMed  Google Scholar 

  • Yasuda Y, Kageyama T, Akamine A, Shibata M, Kominami E, Uchiyama Y, Yamamoto K (1999) Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D. J Biochem 125:1137–1143

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood Cliffs, N.J

    Google Scholar 

  • Zecchinon L, Claverie P, Collins T, D'Amico S, Delille D, Feller G, Georlette D, Gratia E, Hoyoux A, Meuwis M-A, Sonan G, Gerday C (2001) Did psychrophilic enzymes really win the challenge? Extremophiles 5:313–321

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Julio Cordoba and Patricia Hernandez for technical guidance. Ira Fogel provided editorial comments. The project was funded by Consejo Nacional de Ciencia y Tecnología (CONACYT grant: 80935). L. R. was a recipient of a CONACYT doctoral fellowship (#200577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando García-Carreño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojo, L., García-Carreño, F. & de los Angeles Navarrete del Toro, M. Cold-Adapted Digestive Aspartic Protease of the Clawed Lobsters Homarus americanus and Homarus gammarus: Biochemical Characterization. Mar Biotechnol 15, 87–96 (2013). https://doi.org/10.1007/s10126-012-9461-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-012-9461-4

Keywords

Navigation