Skip to main content
Log in

Indexing volumetric shapes with matching and packing

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

We describe a novel algorithm for bulk-loading an index with high-dimensional data and apply it to the problem of volumetric shape matching. Our matching and packing algorithm is a general approach for packing data according to a similarity metric. First, an approximate \(k\)-nearest neighbor graph is constructed using vantage-point initialization, an improvement to previous work that decreases construction time while improving the quality of approximation. Then, graph matching is iteratively performed to pack related items closely together. The end result is a dense index with good performance. We define a new query specification for shape matching that uses minimum and maximum shape constraints to explicitly specify the spatial requirements of the desired shape. This specification provides a natural language for performing volumetric shape matching and is readily supported by the geometry-based similarity search (GSS) tree, an indexing structure that maintains explicit representations of volumetric shape. We describe our implementation of a GSS tree for volumetric shape matching and provide a comprehensive evaluation of parameter sensitivity, performance, and scalability. Compared to previous bulk-loading algorithms, we find that matching and packing can construct a GSS tree index in the same amount of time that is denser, flatter, and better performing, with an observed average performance improvement of 2X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Aronovich L, Spiegler I (2007) CM-tree: a dynamic clustered index for similarity search in metric databases. Data Knowl Eng 63(3):919–946

    Article  Google Scholar 

  2. Aronovich L, Spiegler I (2010) Bulk construction of dynamic clustered metric trees. Knowl Inf Syst 22(2):211–244

    Article  Google Scholar 

  3. Ausiello G (1999) Complexity and approximation: combinatorial optimization problems and their approximability properties. Springer, Berlin

    Book  MATH  Google Scholar 

  4. Bustos B, Keim DA, Saupe D, Schreck T, Vranić DV (2005) Feature-based similarity search in 3D object databases. ACM Comput Surv 37(4):345–387

    Article  Google Scholar 

  5. Chaouch M, Verroust-Blondet A (2008) A novel method for alignment of 3d models. In: IEEE international conference on shape modeling and applications, 2008. SMI 2008, pp 187–195

  6. Chávez E, Navarro G, Baeza-Yates R, Marroquín JL (2001) Searching in metric spaces. ACM Comput Surv 33(3):273–321. doi:10.1145/502807.502808

    Article  Google Scholar 

  7. Chebolu P, Frieze A (2010) Finding a maximum matching in a sparse random graph in \(O(n)\) expected time. JACM 57(4):24

    Article  MathSciNet  Google Scholar 

  8. Connolly ML (1983) Analytical molecular surface calculation. J Appl Crystallogr 16(5):548–558. doi:10.1107/S0021889883010985

    Article  Google Scholar 

  9. Dong W, Moses C, Li K (2011) Efficient k-nearest neighbor graph construction for generic similarity measures. In: Proceedings of the international WWW conference, ACM, pp 577–586

  10. Dunbar JB, Smith RD, Yang C-Y, Ung PM-U, Lexa KW, Khazanov NA, Stuckey JA, Wang S, Carlson HA (2011) CSAR benchmark exercise of 2010: selection of the protein-ligand complexes. J Chem Inf Model 51(9), 2036–2046. [PubMed: 21728306] [PubMed Central:PMC3180202] [doi:10.1021/ci200082t]. http://pubs.acs.org/doi/abs/10.1021/ci200082t

    Google Scholar 

  11. Edmonds J (1965) Paths, trees, and flowers. Can J Math 17(3):449–467

    Article  MATH  MathSciNet  Google Scholar 

  12. Hjaltason GR, Samet H (2003) Index-driven similarity search in metric spaces (survey article). ACM T Datab Syst 28(4):517–580

    Article  Google Scholar 

  13. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49(23), 6789–801. [PubMed:17154509] [PubMed Central: PMC3383317] [doi:10.1021/jm0608356]

    Google Scholar 

  14. Iyer N, Jayanti S, Lou K, Kalyanaraman Y, Ramani K (2005) Three-dimensional shape searching: state-of-the-art review and future trends. Comput-Aided Des 37(5):509–530

    Article  Google Scholar 

  15. Keim DA (1997) Efficient support of similarity search in spatial data bases. Habilitation thesis, University of Munich

  16. Keim DA (1999) Efficient geometry-based similarity search of 3D spatial databases. In: Proceedings of the international conference on management of data. ACM, New York, NY, USA, pp 419–430. doi:10.1145/304182.304219

  17. Koes D, Khoury K, Huang Y, Wang W, Bista M, Popowicz GM, Wolf S, Holak TA, Dömling A, Camacho CJ (2012) Enabling large-scale design, synthesis and validation of small molecule protein-protein antagonists. PLoS ONE 7(3), e32839 EP. [PubMed: 22427896] [PubMed Central: PMC3299697] [doi:10.1371/journal.pone.0032839]

  18. Kolmogorov V (2009) Blossom V: a new implementation of a minimum cost perfect matching algorithm. Math Prog Comput 1(1):43–67

    Article  MATH  MathSciNet  Google Scholar 

  19. Lem (n.d.) LEMON Graph Library, version 1.2.2. http://lemon.cs.elte.hu

  20. Li B, Godil A, Aono M, Bai X, Furuya T, Li L, López-Sastre R, Johan H, Ohbuchi R, Redondo-Cabrera C et al (2012) Shrec’12 track: Generic 3d shape retrieval. In: Proceedings of the 5th eurographics conference on 3D object retrieval, Eurographics Association, pp 119–126

  21. López-Sastre R, García-Fuertes A, Redondo-Cabrera C, Acevedo-Rodríguez F, Maldonado-Bascón S (2013) Evaluating 3d spatial pyramids for classifying 3d shapes. Comput Graph 37(5), 473–483. http://www.sciencedirect.com/science/article/pii/S0097849313000551

    Google Scholar 

  22. Meagher D (1982) Geometric modeling using octree encoding. Comput Graph Image Process 19(2):129–147

    Article  Google Scholar 

  23. Mes (n.d.) Meshlab. http://meshlab.sourceforge.net. Accessed 8 July 2013

  24. Micali S, Vazirani VV (1980) An \(O(\sqrt{|V|}|E|)\) algorithm for finding maximum matching in general graphs. In: Proceedings of symposium on foundations of computer science. IEEE, pp 17–27

  25. Min P (n.d.) binvox. Version 1.17, build #586. http://www.cs.princeton.edu/min/binvox/. Accessed 8 July 2013

  26. Mokbel MF, Aref WG, Grama A (2003) Spectral LPM: an optimal locality-preserving mapping using the spectral (not fractal) order. In: Proceedings of the international conference on data engineering. IEEE, pp 699–701

  27. Mount DM (2010) ANN programming manual, version 1.1.2. http://www.cs.umd.edu/mount/ANN

  28. Nooruddin FS, Turk G (2003) Simplification and repair of polygonal models using volumetric techniques. IEEE Trans Vis Comput Graph 9(2):191–205. doi:10.1109/TVCG.2003.1196006

    Article  Google Scholar 

  29. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminf 3, 33. [PubMed:21982300] [PubMed Central: PMC3198950] [doi:10.1186/1758-2946-3-33]

  30. Ohbuchi R, Nakazawa M, Takei T (2003) Retrieving 3D shapes based on their appearance. In: Proceedings of the international workshop on multimedia information retrieval, pp 39–45

  31. Osada R, Funkhouser T, Chazelle B, Dobkin D (2002) Shape distributions. ACM T Graph 21(4):807–832

    Article  Google Scholar 

  32. Pagel BU, Six HW, Winter M (1995) Window query-optimal clustering of spatial objects. In: Proceedings of the symposium on principles of database systems. ACM, pp 86–94

  33. Paquet E, Rioux M, Murching A, Naveen T, Tabatabai A (2000) Description of shape information for 2-D and 3-D objects. Signal Process Image Commun 16(1):103–122

    Article  Google Scholar 

  34. Paredes R, Chávez E, Figueroa K, Navarro G (2006) Practical construction of k-nearest neighbor graphs in metric spaces. In: Experimental Algorithms, pp 85–97

  35. Redondo-Cabrera C, López-Sastre R, Acevedo-Rodríguez J, Maldonado-Bascón S (2012) Surfing the point clouds: selective 3d spatial pyramids for category-level object recognition. In: IEEE conference on computer vision and pattern recognition (CVPR), 2012, pp 3458–3465

  36. Samet H (2006) Foundations of multidimensional and metric data structures. Morgan Kaufmann, Los Altos

    MATH  Google Scholar 

  37. Sfikas K, Theoharis T, Pratikakis I (2011) Rosy+: 3d object pose normalization based on pca and reflective object symmetry with application in 3d object retrieval. Int J Comput Vis 91(3):262–279. doi:10.1007/s11263-010-0395-x

    Article  Google Scholar 

  38. Shr (n.d.) Shrec 2012–shape retrieval contest based on generic 3d dataset. http://www.itl.nist.gov/iad/vug/sharp/contest/2012/Generic3D/. Accessed 8 July 2013

  39. Spr (n.d.) sproxel, r173. http://code.google.com/p/sproxel/

  40. Tangelder JWH, Veltkamp RC (2008) A survey of content based 3D shape retrieval methods. Multimed Tools Appl 39(3):441–471

    Article  Google Scholar 

  41. Vleugels J, Veltkamp RC (2002) Efficient image retrieval through vantage objects. Pattern Recogn 35(1):69–80

    Article  MATH  Google Scholar 

  42. Zhang J, Smith S (2009) Shape similarity matching with octree representations. J Comput Inf Sci Eng 9:034503

    Article  Google Scholar 

  43. Zito T, Wilbert N, Wiskott L, Berkes P (2009) Modular toolkit for data processing (mdp): a python data processing framework. Front Neuroinf 2(8). http://www.frontiersin.org/neuroinformatics/10.3389/neuro.11.008.2008/abstract

Download references

Acknowledgments

This work was supported by the National Institute of Health [R01GM097082]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ryan Koes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koes, D.R., Camacho, C.J. Indexing volumetric shapes with matching and packing. Knowl Inf Syst 43, 157–180 (2015). https://doi.org/10.1007/s10115-014-0729-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-014-0729-z

Keywords

Navigation