Skip to main content
Log in

Cutting planes for RLT relaxations of mixed 0–1 polynomial programs

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

The reformulation–linearization technique, due to Sherali and Adams, can be used to construct hierarchies of linear programming relaxations of mixed 0–1 polynomial programs. As one moves up the hierarchy, the relaxations grow stronger, but the number of variables increases exponentially. We present a procedure that generates cutting planes at any given level of the hierarchy, by optimally weakening linear inequalities that are valid at any given higher level. Computational experiments, conducted on instances of the quadratic knapsack problem, indicate that the cutting planes can close a significant proportion of the integrality gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, W.P., Guignard, M., Hahn, P.M., Hightower, W.L.: A level-2 reformulation–linearization technique bound for the quadratic assignment problem. Eur. J. Oper. Res. 180, 983–996 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barahona, F., Jünger, M., Reinelt, G.: Experiments in quadratic 0–1 programming. Math. Program. 44, 127–137 (1989)

    Article  MATH  Google Scholar 

  3. Billionnet, A., Calmels, F.: Linear programming for the 0–1 quadratic knapsack problem. Eur. J. Oper. Res. 92, 310–325 (1996)

    Article  MATH  Google Scholar 

  4. Bonami, P., Minoux, M.: Using rank-1 lift-and-project closures to generate cuts for 0–1 MIPs, a computational investigation. Discrete Optim. 2, 288–307 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caprara, A., Pisinger, D., Toth, P.: Exact solution of the quadratic knapsack problem. INFORMS J. Comput. 11, 125–137 (1998)

    Article  MathSciNet  Google Scholar 

  6. Christof, T., Loebl, A.: PORTA (polyhedron representation transformation algorithm). Software package, available for download at http://www.iwr.uni-heidelberg.de/groups/comopt/software

  7. Floudas, C.A.: Deterministic Global Optimization: Theory, Algorithms and Applications. Kluwer, Dordrecht (1999)

    Google Scholar 

  8. Fukuda, K.: cdd (C double description program). Software package, available for download at: http://www.cs.mcgill.ca/~fukuda/soft/cdd_home

  9. Gallo, G., Hammer, P.L., Simeone, B.: Quadratic knapsack problems. Math. Program. Stud. 12, 132–149 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grötschel, M., Lovász, L., Schrijver, A.J.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  11. Hahn, P.M., Zhu, Y.-R., Guignard, M., Hightower, W.L., Saltzman, M.J.: A level-3 reformulation–linearization technique-based bound for the quadratic assignment problem. INFORMS J. Comput. 24, 202–209 (2012)

    Article  MathSciNet  Google Scholar 

  12. Helmberg, C., Rendl, F.: Solving quadratic (0, 1)-programs by semidefinite programs and cutting planes. Math. Program. 82, 291–315 (1998)

    MATH  MathSciNet  Google Scholar 

  13. Hunting, M., Faigle, U., Kern, W.: A Lagrangean relaxation approach to the edge-weighted clique problem. Eur. J. Oper. Res. 131, 119–131 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lovász, L., Schrijver, A.J.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1, 166–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Padberg, M.W.: The Boolean quadric polytope: some characteristics, facets and relatives. Math. Program. 45, 139–172 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96, 293–320 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pisinger, D.: The quadratic knapsack problem—a survey. Discrete Appl. Math. 155, 623–648 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Saito, H., Fujie, T., Matsui, T., Matuura, S.: A study of the quadratic semi-assignment polytope. Discrete Optim. 6, 37–50 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sherali, H.D., Adams, W.: A hierarchy of relaxations between the continuous and convex hull representations for 0–1 programming problems. SIAM J. Discrete Math. 3, 411–430 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial programming problems using a reformulation–linearization technique. J. Glob. Optim. 2, 101–112 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems. Discrete Appl. Math. 52, 83–106 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sherali, H.D., Lee, Y.: Tighter representations for set partitioning problems. Discrete Appl. Math. 68, 153–167 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Dordrecht (1998)

    Google Scholar 

  25. Sherali, H.D.: RLT: A unified approach for discrete and continuous nonconvex optimization. Ann. Oper. Res. 149, 185–193 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Kluwer, Dortrecht (2003)

    Google Scholar 

  27. Yajima, Y., Fujie, T.: A polyhedral approach for nonconvex quadratic programming problems with box constraints. J. Glob. Optim. 13, 151–170 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to the late Alberto Caprara for giving us his QKP code. Thanks are also due to two anonymous referees for several helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam N. Letchford.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomeni, F.D., Kaparis, K. & Letchford, A.N. Cutting planes for RLT relaxations of mixed 0–1 polynomial programs. Math. Program. 151, 639–658 (2015). https://doi.org/10.1007/s10107-015-0863-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0863-8

Keywords

Mathematics Subject Classification

Navigation