Skip to main content
Log in

Genetic determination and localization of multiple bacteriocins produced by Enterococcus faecium CWBI-B1430 and Enterococcus mundtii CWBI-B1431

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Enterococcus faecium CWBI-B1430 and Enterococcus mundtii CWBI-B1431 from artisanal-produced Peruvian cheeses showed the presence of 4 putative bacteriocin genes: enterocin A, enterocin B, enterocin P, and mundticin KS. The multiple bacteriocin producer E. faecium CWBI-B1430 presented 1 plasmid of 34.6 kb, whereas E. mundtii CWBI-B1431 contained 1 plasmid of 11.0 kb. The structural gene responsible for mundticin KS production was located on 5.6 and 3.1 kb HindIII plasmid fragments. The reverse transcription-PCR analysis showed the expression of the bacteriocin genes enterocin A, enterocin B, and mundticin KS in E. faecium CWBI-B1430 and the bacteriocin genes enterocin P and mundticin KS in E. mundtii CWBI-B1431. To our knowledge, this is the first report of the expression of mundticin KS in E. faecium and enterocin P in E. mundtii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referencies

  1. Franzetti L, Pompei M, Scarpellini M, Galli A. Phenotypic and genotypic characterization of Enterococcus spp. of different origins. Curr. Microbiol. 49: 255–260 (2004)

    Article  CAS  Google Scholar 

  2. Giraffa G. Functionality of enterococci in dairy products. Int. J. Food Microbiol. 88: 215–222 (2003)

    Article  CAS  Google Scholar 

  3. Lim S, Park M, Chang D. Characterization of bacteriocin produced by Enterococcus faecium MJ-14 isolated from meju. Food Sci. Biotechnol. 14: 49–57 (2005)

    CAS  Google Scholar 

  4. Ben Belgacem Z, Ferchichi M, Prévost H, Dousset X, Manai M. Screening for anti-listerial bacteriocin-producing lactic acid bacteria from ‘Gueddid’ a traditionally Tunisian fermented meat. Meat Sci. 78: 513–521 (2007)

    Article  Google Scholar 

  5. Foulquié M, Sarantinopoulos P, Tsakalidou E, De Vuyst L. The role and application of enterococci in food and health. Int. J. Food Microbiol. 106: 1–24 (2006)

    Article  Google Scholar 

  6. Franz CH, Van Belkum M, Holzapfel W, Abriouel H, Gálvez A. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol. Rev. 31: 293–310 (2007)

    Article  CAS  Google Scholar 

  7. Ghrairi T, Frere J, Berjeaud J, Manai M. Purification and characterisation of bacteriocins produced by Enterococcus faecium from Tunisian rigouta cheese. Food Control 19: 162–169 (2008)

    Article  CAS  Google Scholar 

  8. Aguilar-Galvez A, Dubois-Dauphin R, Ghalfi H, Campos D, Thonart P. Description of two Enterococcus strains isolated from traditional Peruvian artisanal-produced cheeses with a bacteriocin-like inhibitory. Biotechnol. Agron. Soc. 13: 349–356 (2009)

    Google Scholar 

  9. Heilig J, Elbing K, Brent R. Large-scale preparation of plasmid DNA. pp.1.7.9–1.7.10. In: Current Protocols in Molecular Biology. Ausuhel F, Brent R, Kingston R, Moore D, Seidman J, Smith J, Struhl K (eds). John Wiley and Sons, New York, NY, USA (2002)

    Google Scholar 

  10. Park S, Itoh K, Fujisawa T. Characteristics and identification of enterocins produced by Enterococcus faecium JCM 5804T. J. Appl. Microbiol. 95: 294–300 (2003)

    Article  CAS  Google Scholar 

  11. Foulquié M, Callewaert R, Devreese B, Van Beeumen J, De Vuyst L. Isolation and biochemical characterization of enterocins produced by enterococci from different sources. J. Appl. Microbiol. 94: 214–229 (2003)

    Article  Google Scholar 

  12. Cintas L, Casaus P, Herranz C, Sigve L, Holo H, Hernández P, Nes I. Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J. Bacteriol. 182: 6806–6814 (2000)

    Article  CAS  Google Scholar 

  13. Gutierrez J, Criado R, Citti R, Martín M, Herranz C, Nes I, Cintas L, Hernández P. Cloning, production, and functional expression of enterocin P, a sec-dependent bacteriocin produced by Enterococcus faecium P13, in Escherichia coli. Int. J. Food Microbiol. 103: 239–250 (2005)

    Article  CAS  Google Scholar 

  14. Saavedra L, Minahk C, Ruiz A, Sesma F. Enhancement of the enterocin CRL35 activity by a synthetic peptide derived from the NH2-terminal sequence. Antimicrob. Agents Ch. 48: 2778–2781 (2004)

    Article  CAS  Google Scholar 

  15. Zendo T, Eungruttanagorn N, Fujioka S, Tashiro Y, Nomura K, Sera Y, Kobayashi G, Nakayama J, Ishizaki A, Sonomoto K. Identification and production of a bacteriocin from Enterococcus mundtii QU 2 isolated from soybean. J. Appl. Microbiol. 99: 1181–1190 (2005)

    Article  CAS  Google Scholar 

  16. Kawamoto S, Shima J, Sato R, Eguchi T, Ohmomo S, Shibato J, Horikoshi N, Takeshita K, Sameshima T. Biochemical and genetic characterization of mundticin KS, an antilisterial peptide produced by Enterococcus mundtii NFRI 7393. Appl. Environ. Microb. 68: 3830–3840 (2002)

    Article  CAS  Google Scholar 

  17. Aymerich T, Holo H, Håvarstein L, Hugas M, Garriga M, Nes I. Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl. Environ. Microb. 62: 1676–1682 (1996)

    CAS  Google Scholar 

  18. Cintas L, Casaus P, Håvarstein L, Hernández P, Nes I. Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl. Environ. Microb. 63: 4321–4330 (1997)

    CAS  Google Scholar 

  19. Casaus P, Nilsen T, Cintas L, Nes I, Hernández P, Holo H. Enterocin B, new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A. Microbiology 143: 2287–2294 (1997)

    Article  CAS  Google Scholar 

  20. Cintas L, Casaus P, Fernández M, Hernández P. Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A, and lactocin S against spoilage and foodborne pathogenic bacteria. Food Microbiol. 15: 289–298 (1998)

    Article  CAS  Google Scholar 

  21. O’Keeffe T, Hill C, Ross P. Characterization and heterologous expression of the genes encoding enterocin A production, immunity, and regulation in Enterococcus faecium DPC1146. Appl. Environ. Microb. 65: 1506–1515 (1999)

    Google Scholar 

  22. Du Toit D, Franz C, Dicks L, Holzapfel W. Preliminary characterization of bacteriocins produced by Enterococcus faecium and Enterococcus faecalis isolated from pig faeces. J. Appl. Microbiol. 88: 482–494 (2000)

    Article  Google Scholar 

  23. Ennahar S, Asou Y, Zendo T, Sonomoto K, Ishizaki A. Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. Int. J. Food Microbiol. 70: 291–301 (2001)

    Article  CAS  Google Scholar 

  24. Herranz C, Casaus P, Mukhopadhyay S, Martínez J, Rodríguez J, Nes I, Hernández P, Cintas L. Enterococcus faecium P21: A strain occurring naturally in dry-fermented sausages producing the class II bacteriocins enterocin A and enterocin B. Food Microbiol. 18: 115–131 (2001)

    Article  CAS  Google Scholar 

  25. Mareková M, Lauková A, De Vuyst L, Skaugen M, Nes I. Partial characterization of bacteriocins produced by environmental strain Enterococcus faecium EK13. J. Appl. Microbiol. 94: 523–530 (2003)

    Article  Google Scholar 

  26. Cocolin L, Foschino R, Comi G, Grazia M. Description of the bacteriocins produced by two strains of Enterococcus faecium isolated from Italian goat milk. Food Microbiol. 24: 752–758 (2007)

    Article  CAS  Google Scholar 

  27. Lauková A, Czikková S, Vasilková Z, Juriš P, Mareková M. Occurrence of bacteriocin production among environmental enterococci. Lett. Appl. Microbiol. 27: 178–182 (1998)

    Article  Google Scholar 

  28. Bennik M, Vanloo B, Brasseur R, Gorris L, Smid E. A novel bacteriocin with a YGNGV motif from vegetable-associated Enterococcus mundtii: Full characterization and interaction with target organisms. Biochim. Biophys. Acta 1373: 47–58 (1998)

    Article  CAS  Google Scholar 

  29. Campos C, Rodríguez O, Calo-Mata P, Prado M, Barros-Velázquez J. Preliminary characterization of bacteriocins from Lactococcus lactis, Enterococcus faecium, and Enterococcus mundtii strains isolated from turbot (Psetta maxima). Food Res. Int. 39: 356–364 (2006)

    Article  CAS  Google Scholar 

  30. Ferreira A, Canal N, Morales D, Bopp D, Corção G. Characterization of enterocins produced by Enterococcus mundtii isolated from humans feces. Braz. Arch. Biol. Techn. 50: 249–258 (2007)

    Google Scholar 

  31. Criado R, Gutiérrez J, Martín M, Herranz C, Hernández C, Cintas L. Immunochemical characterization of temperature-regulated production of enterocin L50 (EntL50A and EntL50B), enterocin P, and enterocin Q by Enterococcus faecium L50. Appl. Environ. Microb. 72: 7634–7643 (2006)

    Article  CAS  Google Scholar 

  32. Abriouel H, Ben Omar N, Lucas R, Martínez-Cañamero M, Gálvez A. Bacteriocin production, plasmid content, and plasmid location of enterocin P structural gene in enterococci isolated from food sources. Lett. Appl. Microbiol. 42: 331–337 (2006)

    Article  CAS  Google Scholar 

  33. Aymerich T, Artigas M, Garriga M, Monfort J, Hugas M. Effect of sausage ingredients and additives on the production of enterocins A and B by Enterococcus faecium CTC492. Optimization of in vitro production and anti-listerial effect in dry fermented sausages. J. Appl. Microbiol. 88: 686–694 (2000)

    Article  CAS  Google Scholar 

  34. Drider D, Fimland G, Héchard Y, McMullen L, Prévost H. The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. R. 70: 564–582 (2006)

    Article  CAS  Google Scholar 

  35. Franz C, Worobo R, Quadri L, Schillinger U, Holzapfel W, Vederas J, Stiles M. Atypical genetic locus associated with constitutive production of enterocin B by Enterococcus faecium BFE 900. Appl. Environ. Microb. 65: 2170–2178 (1999)

    CAS  Google Scholar 

  36. Quadri L, Yan L, Stiles M, Vederas J. Effect of amino acid substitutions on the activity of carnobacteriocin B2. J. Biol. Chem. 272: 3384–3388 (1997)

    Article  CAS  Google Scholar 

  37. Van Belkum M, Stiles M. Nonlantibiotic antibacterial peptides from lactic acid bacteria. Nat. Prod. Rep. 17: 323–365 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Campos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar-Galvez, A., Dubois-Dauphin, R., Campos, D. et al. Genetic determination and localization of multiple bacteriocins produced by Enterococcus faecium CWBI-B1430 and Enterococcus mundtii CWBI-B1431. Food Sci Biotechnol 20, 289–296 (2011). https://doi.org/10.1007/s10068-011-0041-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-011-0041-6

Keywords

Navigation