Skip to main content
Log in

SUMO modification of NZFP mediates transcriptional repression through TBP binding

  • Research Article
  • Published:
Molecules and Cells

Abstract

The negatively regulating zinc finger protein (NZFP) is an essential transcription repressor required for early development during gastrulation in Xenopus laevis. In this study, we found that NZFP interacts with the small ubiquitin-like modifier (SUMO) conjugation E2 enzyme, Ubc9, and contains three putative SUMO conjugation sites. Studies with NZFP mutants containing mutations at the putative SUMO conjugation sites showed that these sites were able to be modified independently with SUMO. NZFP was found to be localized in the same nuclear bodies with SUMO-1. However, sumoylation of NZFP did not play a role either in the translocation of NZFP into the nucleus or on nuclear body formation. While wild type NZFP showed significant transcriptional repression, SUMO-conjugation site mutants manifested a decrease in transcriptional repression activity which is reversely proportional to the amount of sumoylation. The sumoylation defective mutant lost its TBP binding activity, while wild type NZFP interacted with TBP and inhibited transcription complex formation. These results strongly suggest that the sumoylation of NZFP facilitates NZFP to bind to TBP and the NZFP/TBP complex then represses the transcription of the target gene by inhibiting basal transcription complex formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arce, L., Yokoyama, N.N., and Waterman, M.L. (2006). Diversity of LEF/TCF action in development and disease. Oncogene 25, 7492–7504.

    Article  PubMed  CAS  Google Scholar 

  • Bies, J., Markus, J., and Wolff, L. (2002). Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c- Myb transcription factor modifies its stability and transactivation capacity. J. Biol. Chem. 277, 8999–9009.

    Article  PubMed  CAS  Google Scholar 

  • Buscarlet, M., and Stifani, S. (2007). The ‘Marx’ of Groucho on development and disease. Trends Cell. Biol. 17, 353–361.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C.C., Lin, D.Y., Fang, H.I., Chen, R.H., and Shih, H.M. (2005). Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4. J. Biol. Chem. 280, 10164–10173.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Martinez, J., Brown, C.V., Diez, E., Tilburn, J., Arst, H.N. Jr., Penalva, M.A., and Espeso, E.A. (2003). Overlap of nuclear localisation signal and specific DNA-binding residues within the zinc finger domain of PacC. J. Mol. Biol. 334, 667–684.

    Article  PubMed  CAS  Google Scholar 

  • Gareau, J.R., and Lima, C.D. (2010). The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat. Rev. Mol. Cell Biol. 11, 861–871.

    Article  PubMed  CAS  Google Scholar 

  • Geiss-Friedlander R., and Melchior F., (2007). Concepts in sumoylation: a decade on. Mol. Cell. Biol. 8, 947–956.

    CAS  Google Scholar 

  • Gill, G. (2004). SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 18, 2046–2059.

    Article  PubMed  CAS  Google Scholar 

  • Gill, G. (2005). Something about SUMO inhibits transcription. Curr. Opin. Genet. Dev. 15, 536–541.

    Article  PubMed  CAS  Google Scholar 

  • Gong, L., Kamitani, T., Fujise, K., Caskey, L.S., and Yeh, E.T. (1997). Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9. J. Biol. Chem. 272, 28198–28201.

    Article  PubMed  CAS  Google Scholar 

  • Hong, Y., Rogers, R., Matunis, M.J., Mayhew, C.N., Goodson, M.L., Park-Sarge, O.K., Sarge, K.D., and Goodson, M. (2001). Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J. Biol. Chem. 276, 40263–40267.

    PubMed  CAS  Google Scholar 

  • Kim, Y.H., Choi, C.Y., and Kim, Y. (1999). Covalent modification of the homeodomain-interacting protein kinase 2 (HIPK2) by the ubiquitin-like protein SUMO-1. Proc. Natl. Acad. Sci. USA 96, 12350–12355.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J., Cantwell, C.A., Johnson, P.F., Pfarr, C.M., and Williams, S. C. (2002). Transcriptional activity of CCAAT/enhancer-binding proteins is controlled by a conserved inhibitory domain that is a target for sumoylation. J. Biol. Chem. 277, 38037–38044.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K.I., Baek, S.H., and Chung, C.H. (2002). Versatile protein tag, SUMO: Its enzymology and biological function. J. Cell. Physiol. 191, 257–268.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M., Choi, J., Carlson, B.A., Han, J.K., Rhee, K., Sargent, T., Hatfield, D.L., and Lee, B.J. (2003a). A novel TBP-interacting zinc finger protein functions in early development of Xenopus laevis. Biochem. Biophys. Res. Commun. 306, 1106–1111.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M., Park, C.H. Lee, M.S., Carlson, B.A., Hatfield, D.L., and Lee, B.J. (2003b). A novel TBP-interacting zinc finger protein represses transcription by inhibiting the recruitment of TFIIA and TFIIB. Biochem. Biophys. Res. Commun. 306, 231–238.

    Article  PubMed  CAS  Google Scholar 

  • Knöchel, W., Poting, A., Koster, M., el Baradi, T., Nietfeld, W., Bouwmeester, T., and Pieler, T. (1989). Evolutionary conserved modules associated with zinc fingers in Xenopus laevis. Proc. Natl. Acad. Sci. USA 86, 6097–6100.

    Article  PubMed  Google Scholar 

  • Kovall, R.A. (2007). Structures of CSL, Notch and Mastermind proteins: piecing together an active transcription complex. Curr. Opin. Struct. Biol. 17, 117–127.

    Article  PubMed  CAS  Google Scholar 

  • Le Drean, Y., Mincheneau, N., Le Goff, P., and Michel, D. (2002). Potentiation of glucocorticoid receptor transcriptional activity by sumoylation. Endocrinology 143, 3482–3489.

    Article  PubMed  Google Scholar 

  • Li, S.J., and Hochstrasser, M. (2000). The yeast gene ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol. Cell. Biol. 20, 2367–2377.

    Article  PubMed  CAS  Google Scholar 

  • Liu, B., and Shuai, K. (2008). Regulation of the sumoylation system in gene expression. Curr. Opin. Cell Biol. 20, 288–293.

    Article  PubMed  CAS  Google Scholar 

  • Müller, S., Matunis, M.J., and Dejean, A. (1998). Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J. 17, 61–70.

    Article  PubMed  Google Scholar 

  • Poukka, H., Karvonen, U., Janne, O.A., and Palvimo, J.J. (2000). Covalent modification of the androgen receptor by small ubiquitin- like modifier 1 (SUMO-1). Proc. Natl. Acad. Sci. USA 97, 14145–14150.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, M.S., Dargemont, C., and Hay, R.T. (2001). SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276, 12654–12659.

    Article  PubMed  CAS  Google Scholar 

  • Ross, S., Best, J.L., Zon, L.I., and Gill, G. (2002). SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell 10, 831–842.

    Article  PubMed  CAS  Google Scholar 

  • Sapetschnig, A., Rischitor, G., Braun, H., Doll, A., Schergaut, M., Melchior, F., and Suske, G. (2002). Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J. 21, 5206–5215.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, D., and Müller, S. (2003). PIAS/SUMO: new partners in transcriptional regulation. Mol. Life Sci. 60, 2561–2574.

    Article  CAS  Google Scholar 

  • Tian, S., Poukka, H., Palvimo, J.J., and Janne, O.A. (2002). Small ubiquitin-related modifier-1 (SUMO-1) modification of the glucocorticoid receptor. Biochem. J. 367, 907–911.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S.H., and Sharrocks, A.D. (2004). SUMO promotes HDAC-mediated transcriptional repression. Mol. Cell 13, 611–617.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, G., and Yang, Y.C. (2004). ZNF76, a novel transcriptional repressor targeting TATA-binding protein, is modulated by sumoylation. J. Biol. Chem. 279, 42410–42421.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, S., Muller, S., Ronchetti, S., Freemont, P.S., Dejean, A., and Pandolfi, P.P. (2000). Role of SUMO-1-modified PML in nuclear body formation. Blood 95, 2748–2752.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong Jae Lee.

Additional information

These authors contributed equally to this work.

About this article

Cite this article

Kim, M., Chen, Z., Shim, M.S. et al. SUMO modification of NZFP mediates transcriptional repression through TBP binding. Mol Cells 35, 70–78 (2013). https://doi.org/10.1007/s10059-013-2281-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-2281-1

Keywords

Navigation