Skip to main content
Log in

Reviewing, selecting and evaluating features in distinguishing fine changes of global texture

  • Survey
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

The evaluation of appearance parameters is critical for quality assurance purposes when determining lifetime and/or beauty of textile products. Practical evaluations of appearance are often performed by human visual inspection, which is repetitive, exhausting, unreliable and costly. Thus, computerized automatic visual inspection has been used to alleviate those problems. Several papers have proposed objective mechanisms for quality inspection mostly using texture analysis approaches which are often not robust enough. One of the main issues for robustness of texture analysis approaches is the capability of distinguishing between similar textures. In this paper, we review, select and evaluate texture analysis approaches for distinguishing fine changes of global texture in degradation of textile floor coverings. As a result, we found that the power spectrum, local binary patterns, the texture spectrum, Gaussian Markov random fields, autoregressive models and the pseudo-Wigner distribution provide good descriptors for measuring fine changes of global texture. That is, those features can be used as starting point in applications involving fine changes of global texture, as well as a basis for the development of new methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aibara T, Mabuchi T, Ohue K (1999) Automatic evaluation of the appearance of seam puckers on suits. In: Proceedings of the SPIE 3652, machine vision applications in industrial inspection VII, pp 1–4

  2. Waegemana W, Cottyn J, Wyns B, Boullart L, De-Baets B, Van-Langenhove L, Detand J (2008) Classifying carpets based on laser scanner data. Eng Appl Artif Intell 21:907–918

    Article  Google Scholar 

  3. Mirmehdi M, Xie X, Suri J (2008) Handbook of texture analysis, 1st edn. Imperial College Press, London

  4. Zeuch N (2000) Understanding and applying machine vision, 2nd edn. Marcel Dekker, New York, pp 1–7

  5. Siew LH, Hodgson RM, Wood EJ (1988) Texture measures for carpet wear assessment. IEEE Trans Pattern Anal Mach Intell 10:92–105

    Article  Google Scholar 

  6. Davies S, Hall P (1999) Fractal analysis of surface roughness by using spatial data. J R Stat Soc Ser B (Stat Methodol) 61:3–37

    Article  MATH  MathSciNet  Google Scholar 

  7. Kang TJ, Kim SC, Sul IH, Youn JR, Chung K (2005) Fabric surface roughness evaluation using wavelet-fractal method part I: wrinkle, smoothness and Seam Pucker. Text Res J 75:751–760

    Article  Google Scholar 

  8. Xie X (2008) A review of recent advances in surface defect detection using texture analysis techniques. Electron Lett Comput Vis Image Anal 7:1–22

    Google Scholar 

  9. Orjuela-Vargas S, Vansteenkiste E, Rooms F, De-Meulemeester S, De-Keyser R, Philips W (2010) Evaluation of the wear label description in carpets by using local binary pattern techniques. Text Res J 80:2132–2143

    Article  Google Scholar 

  10. Xin W, Georganas ND, Petriu EM (2011) Fabric texture analysis using computer vision techniques. IEEE Trans Instrum Meas 60:44–56

    Article  Google Scholar 

  11. Jose DJ, Hollies NRS, Spivak SM (1986) Instrumental techniques to quantify textural change in carpet part I: image analysis. Text Res J 56:591–597

    Article  Google Scholar 

  12. Orjuela-Vargas S, Copot C, Syafiie S, Vansteenkiste E, Rooms F, Philips W, De-Keyser R, Van-Langenhove L (2008) Carpet wear classification using coocurrence matrices and support vector machines. In: Proceedings of the 19th annual workshop on circuits, systems and signal processing, pp 378–383

  13. Orjuela-Vargas SA, Ortiz-Jaramillo B, Vansteenkiste E, Rooms F, De-Meulemeester S, de-Keyser R, Van-Langenhove L, Philips W (2012) Automatic grading of appearance retention of carpets using intensity and range images. J Electron Imaging. 21:021106

    Article  Google Scholar 

  14. Mori T, Komiyama J (2002) Evaluating wrinkled fabrics with image analysis and neural networks. Text Res J 72:417–422

    Article  Google Scholar 

  15. Mak KL, Li W (2008) Objective evaluation of Seam Pucker on textiles by using self-organizing Map. Int J Comput Sci 35:1–8

    Google Scholar 

  16. Saint-Marc P, Chen JS, Medioni G (1991) Adaptive smoothing: a general tool for early vision. IEEE Trans Pattern Anal Mach Intell 13:514–529

    Article  Google Scholar 

  17. Wood EJ (1993) Description and measurement of carpet appearance. Text Res J 63:580–594

    Article  Google Scholar 

  18. Palmer S, Zhang J, Wang X (2009) New methods for objective evaluation of fabric pilling by frequency domain image processing. Res J Text Appar 13:11–23

    Google Scholar 

  19. Pourdeyhimi B, Xu B, Nayernouri A (1994) Evaluating carpet appearance loss: Pile Lay orientation. Text Res J 64:130–135

    Article  Google Scholar 

  20. Wang J, Wood EJ (1994) A new method for measuring carpet texture change. Text Res J 64:215–224

    Article  Google Scholar 

  21. Xu B (1997) Quantifying surface roughness of carpets by fractal dimension. Cloth Text Res J 15:155–161

    Google Scholar 

  22. Jensen KL, Carstensen JM (2002) Fuzz and Pills evaluated on knitted textiles by image analysis. Text Res J 72:34–50

    Article  Google Scholar 

  23. Choi CJ, Kim HJ, Jin YC, Kim HS (2009) Objective wrinkle evaluation system of fabrics based on 2D FFT. Fibers Polym 10:260–265

    Article  Google Scholar 

  24. Mohri M, Hosseini-Ravandim SA, Youssefi M (2005) Objective evaluation of wrinkled fabric using radon transform. J Text Inst 96:365–370

    Article  Google Scholar 

  25. Pourdeyhimi B, Xu B, Wehrle L (1994) Evaluating carpet appearance loss: periodicity and tuft placement. Text Res J 64:21–32

    Article  Google Scholar 

  26. Militký J, Bleša M (2008) Evaluation of patterned fabric surface roughness. Indian J Fibre Text Res 33:246-252

    Google Scholar 

  27. Sun J, Yao M, Xu B, Bel P (2011) Fabric wrinkle characterization and classification using modified wavelet coefficients and support-vector-machine classifiers. Text Res J 81:902–913

    Article  Google Scholar 

  28. Abril HC, Torres Y, Navarro R, Milln MS (1998) Automatic method based on image analysis for pilling evaluation in fabrics. J Opt Eng 37:2937–2947

    Article  Google Scholar 

  29. Cristbal G, Hormigo J (1999) Texture segmentation through eigen-analysis of the Pseudo-Wigner distribution. Pattern Recognit Lett 20:337–345

    Article  Google Scholar 

  30. Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE. 67:786–804

    Article  Google Scholar 

  31. Swain MJ, Ballard DH (1990) Indexing via color histograms. In: Proceedings of the third international conference on computer vision, pp 390–393

  32. Petrou M, Sevilla P (2006) Image processing: dealing with textures, 1st edn. Wiley, London

  33. Heilbronner RP (1992) The autocorrelation function: an image processing tool for fabric analysis. Tectonophysics 212:351–370

    Article  Google Scholar 

  34. Torabi A, Fossen H, Alaei B (2008) Application of spatial correlation functions in permeability estimation of deformation bands in porous rocks. J Geophys Res Solid Earth 113:1–10

    Article  Google Scholar 

  35. Elunai R, Chandran V, Mabukwa P (2010) Digital image processing techniques for pavement macro-texture analysis. In: Proceedings of the 24th ARRB conference: building on 50 years of road transport research, pp 1–5

  36. Chen CH, Pau LF, Wang PSP (1998) The handbook of pattern recognition and computer vision, 2nd edn. World Scientific Publishing Co., Singapore, pp 207–248

  37. Randen T, Husy J (1999) Filtering for texture classification: a comparative study. IEEE Trans Pattern Anal Mach Intell 21:291–310

    Article  Google Scholar 

  38. Unser M (1986) Sum and difference histograms for texture classification. IEEE Trans Pattern Anal Mach Intell 8:18–125

    Google Scholar 

  39. Lianantonakis M, Petillot YR (2005) Sidescan sonar segmentation using active contours and level set methods. Proc Europe Oceans 719–724

  40. Menp T (2003) The local binary pattern approach to texture analysis extensions and applications. PhD thesis. University of Oulu

  41. Dong Y, Ma J (2011) Wavelet-based image texture classification using local energy histograms. IEEE Signal Process Lett 18:247–250

    Article  Google Scholar 

  42. Liu X, Wang D (2003) Texture classification using spectral histograms. IEEE Trans Image Process 12:661–670

    Article  Google Scholar 

  43. Weszka JS, Dyer CR, Rosenfeld A (1976) A comparative study of texture measures for terrain classification. IEEE Trans Syst Man Cybern 6:269–285

    Article  MATH  Google Scholar 

  44. Ade F (1983) Characterization of textures by Eigenfilters. Signal Process 5:451–457

    Article  Google Scholar 

  45. Tkacenko A, Vaidyanathan PP, Nguyen TQ (2003) On the Eigenfilter design method and its applications: a tutorial. IEEE Trans Circuits Syst II Analog Digit Signal Process 50:497–517

    Article  Google Scholar 

  46. Manjunath BS, Ma WY (1996) Texture features for browsing and retrieval of image Data. IEEE Trans Pattern Anal Mach Intell 18:837–842

    Article  Google Scholar 

  47. Ortiz-Jaramillo B, Garcia-Alvarez J, Orjuela-Vargas S, Führ H, Castellanos-Dominguez G, Philips W (2012) Quantifying image distortion based on Gabor filter bank and multiple regression analysis. In: Procedings of the SPIE electronic imaging, conference 8293: image quality and system performance IX, 82930E

  48. Burt PJ, Adelson EH (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31:532–540

    Article  Google Scholar 

  49. Chan WY, Law NF, Siu WC (2003) Multiscale feature analysis using directional filter bank. In: Proceedings of the fourth international joint conference on information, communications and signal processing and the fourth Pacific rim conference on multimedia, pp 822–826

  50. Vo A, Nguyen TT, Oraintara S (2006) Texture image retrieval using complex directional filter bank. In: Proceedings of the IEEE international symposium on circuits and systems, pp 5495–5498

  51. Laws K (1980) Textured image segmentation. Technical report, University of Southern California Los Angeles Image Processing Inst

  52. Suzuki MT, Yaginuma Y, Kodama H (2009) A 2D texture image retrieval technique based on texture energy filters. In: Proceedings of the international joint conference on computer vision, imaging and computer graphics theory and applications, pp 145–151

  53. Lavvafi MR, Monadjemi S, Moallem P (2010) Film colorization, using artificial neural networks and laws filters. J Comput 5:1094–1099

    Article  Google Scholar 

  54. Li S, Shawe-Taylor J (2005) Comparison and fusion of multiresolution features for texture classification. Pattern Recognit Lett 26:633–638

    Article  MATH  Google Scholar 

  55. Heeger DJ, Bergen JR (1995) Pyramid-based texture analysis/synthesis. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques, pp 229–238

  56. Areepongsa S, Park D, Rao K (2000) Invariant features for texture image retrieval using steerable pyramid. In: Proceedings of the 5th international symposium on wireless personal multimedia communications, pp 1–5

  57. Mojsilovic A, Popovic MV, Rackov DM (2000) On the selection of an optimal wavelet basis for texture characterization. IEEE Trans Image Process 9:2043–2050

    Article  MATH  MathSciNet  Google Scholar 

  58. Redondo R, Fischer S, Sroubek F, Cristbal G (2008) A 2D Wigner distribution-based multisize windows technique for image fusion. J Vis Commun Image Represent 19:12–19

    Article  Google Scholar 

  59. Joshi MS, Bartakke PP, Sutaone MS (2009) Texture representation using autoregressive models. In: Proceedings of the international conference on advances in computational tools for engineering applications, pp 386–390

  60. Abbadeni N (2010) Texture representation and retrieval using the causal autoregressive model. Vis Commun Image Represent 21:651–664

    Article  Google Scholar 

  61. Chen CC, Huang CL (1993) Markov random fields for texture classification. Pattern Recognit Lett 14:907–914

    Article  MATH  Google Scholar 

  62. Paget R, Longsta D (1995) Texture synthesis via a non-parametric Markov random Field. In: Proceedings of the digital image computing: techniques and applications, pp 547–552

  63. Yang F, Jiang T (2003) Pixon-based image segmentation with Markov random fields. IEEE Trans Image Process 12:1552–1559

    Article  Google Scholar 

  64. Al-Kadi OS (2010) Texture measures combination for improved meningioma classification of histopathological images. Pattern Recognit 43:2043–2053

    Article  Google Scholar 

  65. Zar J (2009) Biostatistical analysis, 5th edn. Prentice Hall, Englewood Cliffs

  66. Thompson WR (2011) Variable selection of correlated predictors in logistic regression: investigating the diet-heart hypothesis. PhD thesis, Florida state university

  67. Genizi A (1993) Decomposition of R 2 in multiple regression with correlated regressors. Stat Sin 3:407–420

    MATH  MathSciNet  Google Scholar 

  68. Gan G, Ma C, Wu J (2007) Data clustering: theory, algorithms, and applications, 1st edn. ASA-SIAM

  69. Cong G, Ma S (1996) Dyadic scale space. In: Proceedings of the 13th international conference on pattern recognition, pp 399–402

  70. Garca S, Fernndez A, Luengo J, Herrara F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180:2044–2064

    Article  Google Scholar 

  71. Witten IH, Frank E, Hall MA (2011) Data mining: practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann, Los Altos

  72. Haralick RM, Shanmugam K, Dinstein I(1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621

    Google Scholar 

  73. Wu Y, Pourdeyhimi B, Spivak SM, Hollies NRS (1990) Instrumental techniques to quantify textural and appearance changes in carpet part III: Colorimetric image analysis. Text Res J 60:673–687

    Article  Google Scholar 

  74. Cant JS, Large ME, McCall L, Goodale MA (2008) Independent processing of form, color, and texture in object perception. Perception 37:57–78

    Article  Google Scholar 

  75. Cavina-Pratesi C, Kentridge RW, Heywood CA, Milner AD (2010) Separate channels for processing form, texture, and color: evidence from fMRI adaptation and visual object agnosia. Cereb Cortex 20:2319–2332

    Article  Google Scholar 

Download references

Acknowledgements

This research is partially supported within the framework of WearTex project 2010−2011 funded by CWO; fellowship between Universiteit Gent, Universidad Antonio Nariño and Universidad Nacional de Colombia; and Universiteit Gent, iMinds,IPI. This work is partially supported by the project Universidad Nacional de Colombia, cod 20501007205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ortiz-Jaramillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz-Jaramillo, B., Orjuela-Vargas, S.A., Van-Langenhove, L. et al. Reviewing, selecting and evaluating features in distinguishing fine changes of global texture. Pattern Anal Applic 17, 1–15 (2014). https://doi.org/10.1007/s10044-013-0352-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-013-0352-8

Keywords

Navigation