Skip to main content
Log in

Considering the potential effect of faulting on regional-scale groundwater flow: an illustrative example from Australia’s Great Artesian Basin

De l'effet potentiel de la fracturation sur l’écoulement régional des eaux souterraines : l’exemple illustratif du grand bassin artésien de l'Australie

Consideración del efecto potencial del fallamiento sobre el flujo de agua subterránea a escala regional: un ejemplo ilustrativo de la Gran Cuenca Artesiana de Australia

断层作用对区域尺度地下水流的潜在影响: 澳大利亚大自流盆地的例证

Avaliação do provável efeito de falhas no fluxo regional das águas subterrâneas: um exemplo da Grande Bacia Artesiana, Austrália

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Hydraulic head measurements in the Great Artesian Basin (GAB), Australia, began in the early 20th century, and despite subsequent decades of data collection, a well-accepted smoothed potentiometric surface has continually assumed a contiguous aquifer system. Numerical modeling was used to produce alternative potentiometric surfaces for the Cadna-owie–Hooray aquifers with and without the effect of major faults. Where a fault created a vertical offset between the aquifers and was juxtaposed with an aquitard, it was assumed to act as a lateral barrier to flow. Results demonstrate notable differences in the central portion of the study area between potentiometric surfaces including faults and those without faults. Explicitly considering faults results in a 25–50 m difference where faults are perpendicular to the regional flow path, compared to disregarding faults. These potential barriers create semi-isolated compartments where lateral groundwater flow may be diminished or absent. Groundwater management in the GAB relies on maintaining certain hydraulic head conditions and, hence, a potentiometric surface. The presence of faulting has two implications for management: (1) a change in the inferred hydraulic heads (and associated fluxes) at the boundaries of regulatory jurisdictions; and (2) assessment of large-scale extractions occurring at different locations within the GAB.

Résumé

Les mesures piézométriques dans le Grand Bassin Artésien (GBA) en Australie, ont commencé au début du 20ème siècle, et en dépit des décennies suivantes de collecte de données, une surface piézométrique lisse largement admise a continuellement alimenté l’hypothèse d’un système aquifère continu. Un modèle numérique a été utilisé pour produire des surfaces piézométriques alternatives pour les aquifères de Cadna-owie-Hooray avec et sans l'effet des failles principales. Là où une faille a créé un décalage vertical entre les aquifères et a juxtaposé un aquitard, l’hypothèse d’une barrière latérale aux écoulements a été posée. Les résultats montrent des différences notables dans la partie centrale du secteur d'étude entre les surfaces piézométriques comprenant des failles et celles sans failles. Considérer explicitement les failles conduit à un écart de 25–50 m là où les failles sont perpendiculaires à la direction régionale d’écoulement, par rapport à une approche négligeant les failles. Ces barrières potentielles créent des compartiments partiellement isolés où l'écoulement latéral des eaux souterraines peut être réduit ou absent. La gestion des eaux souterraines dans le GBA se fonde sur le maintien de certaines conditions de charge hydraulique et, par conséquent, d’une surface piézométrique. La présence des failles a deux implications pour la gestion: (1) un changement des charges hydrauliques supposées (et des flux associés) aux frontières des juridictions administratives; et (2) une évaluation des prélèvements d’eau à grande échelle se produisant à différents endroits du GBA.

Resumen

Las mediciones de cargas hidráulicas en la Gran Cuenca Artesiana (GAB), Australia, comenzaron a principios del siglo 20, y a pesar de las subsecuentes décadas de recolección de datos, una bien aceptada superficie potenciométrica suave se supuso continuamente en el sistema acuífero contiguo. Se usó una modelación numérica para producir superficies potenciométricas alternativas para los acuíferos Cadna-owie–Hooray con y sin los efectos de fallas mayores. Donde una falla creaba un desplazamiento vertical entre los acuíferos y se yuxtaponía con un acuitardo, se supuso que eso actuaba como una barrera lateral al flujo. Los resultados demostraron diferencias notables en la porción central del área de estudio entre las superficies potenciométricas que incluyen fallas y aquellas sin fallas. Los resultados considerando explícitamente las fallas muestran una diferencia de 25–50 m cuando las fallas son perpendiculares a la trayectoria de flujo regional, si se comparan sin tener en cuenta las fallas. Estas barreras potenciales crean compartimentos semiaislados donde el flujo subterráneo lateral puede estar disminuido o ausente. El manejo del agua subterránea en el GAB se basa en el mantenimiento de ciertas condiciones de carga hidráulica y, por lo tanto, una superficie potenciométrica. La presencia de fallamiento tiene dos implicancias para el manejo: (1) un cambio en las cargas hidráulicas inferidas (y flujos asociados) en los límites de las jurisdicciones regulatorias; y (2) la evaluación de extracciones en gran escala que ocurren en los diferentes sitios dentro del GAB.

摘要

澳大利亚大自流盆地的水头测量工作始于20世纪早期,尽管经过随后几十年的资料收集,但被广泛接受的平滑压力水面仍旧显示其盆地为一个连续的的含水层系统。采用数值模拟展现了有主要断层影响情况下和无断层影响情况下的Cadna-owie–Hooray含水层供选择的压力水面。当断层在含水层之间产生垂直断错并和隔水层并置时,断层就可充当水流的侧向屏障。结果显示,包括断层的及没有断层的压力水面之间的研究区中部有显著差别。要明确考虑到,在断层垂直于区域水流通道的地方,与那些不起眼的断层相比,这些断层有25–50米的位差。这些潜在的屏障产生半隔离的空间,在此侧向地下水流可能减弱或缺失。大自流盆地地下水管理依赖于保持一定的水头条件,即压力水面。断层作用的存在对管理来说具有两个含义:(1) 管理行政区边界处所推断的水头变化;(2)大自流盆地内不同位置大规模抽水的评价。

Resumo

A medição de cargas hidráulicas na Grande Bacia Artesiana (GBA), Austrália, começou no início do século 20 e, mesmo após décadas de coleta de dados, uma bem aceita superfície potenciométrica plana continua assumindo um sistema aquífero contíguo. Superfícies potenciométricas alternativas foram simuladas com modelos numéricos para o aquífero Cadna-owie-Hooray, com e sem o efeito das principais falhas. Em áreas onde falhas apresentam deslocamento vertical e que colocaram lado a lado aquífero e aquitardo, assumiu-se que a falha se comporta como uma barreira lateral ao fluxo. Resultados demonstram uma notável diferença entre as superfícies potencimétricas para condições com e sem falhas na região central da área de estudo. Diferenças de 25–50 m são estimadas em áreas com falhas perpendiculares ao sentido de fluxo regional em comparação com a simulação sem falhas. Estas potenciais barreiras criam compartimentos semi-isolados no aquífero onde o fluxo lateral das águas subterrâneas deve ser menor ou ausente. A gestão das águas subterrâneas da GBA baseia-se na manutenção de uma certa condição das cargas hidráulicas, e, desta forma, de uma superfície potenciométrica. A presença de falhas tem duas implicações para a gestão: (1) uma mudança na carga hidráulica inferida (e fluxos associados) nas fronteiras de juridições regulatórias; e (2) avaliação das extrações de grande escala que ocorrem em diferentes localidades na GBA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alley WM, Bair SE, Wireman M (2013) “Deep” groundwater. Ground Water 51:653–654. doi:10.1111/gwat.12098

    Article  Google Scholar 

  • Anderson MP, Woessner WW (1992) Applied groundwater modeling: simulation of flow and advective transport. Academic, San Diego, CA, 379 pp

    Google Scholar 

  • Audibert M (1976) Progress report of the Great Artesian Basin hydrogeological study, 1972–1974. Record 1976/5, Bureau of Mineral Resources, Geology and Geophysics, Canberra, Australia

  • Beckie R (1996) Measurement scale, network sampling scale, and groundwater model parameters. Water Resour Res 32:65–76. doi:10.1029/95WR02921

    Article  Google Scholar 

  • Bense V, van Balen R (2003) Hydrogeological aspects of fault zones on various scales in the Roer Valley Rift System. J Geochem Explor 78–79:317–320. doi:10.1016/S0375-6742(03)00031-1

    Article  Google Scholar 

  • Bense VF, Gleeson T, Loveless SE, Bour O, Scibek J (2013) Fault zone hydrogeology. Earth-Sci Rev. doi:10.1016/j.earscirev.2013.09.008

    Google Scholar 

  • Bentley HW, Phillips FM, Davis SN, Habermehl MA, Airey PL, Calf GE, Elmore D, Gove HE, Torgersen T (1986) Chlorine-36 dating of very old groundwater: 1. the Great Artesian Basin, Australia. Water Resour Res 22:1991–2001. doi:10.1029/WR022i013p01991

    Article  Google Scholar 

  • Bredehoeft J (2005) The conceptualization model problem: surprise. Hydrogeol J 13:37–46. doi:10.1007/s10040-004-0430-5

    Article  Google Scholar 

  • Bredehoeft JD, Blitz K, Sharp-Hansen S (1992) The hydrodynamics of the Big Horn Basin: a study of the role of faults. Am Assoc Petrol Geol Bull 76:530–546

    Google Scholar 

  • Cilona A, Aydin A, Johnson NM (2014) Permeability of a fault zone crosscutting a sequence of sandstones and shales and its influence on hydraulic head distribution in the Chatsworth Formation, California, USA. Hydrogeol J. doi:10.1007/s10040-014-1206-1

    Google Scholar 

  • Cook PG, Böhlke J-K (2000) Determining timescales for groundwater flow and solute transport. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, London, pp 1–30

    Chapter  Google Scholar 

  • Cools J, Meyus Y, Solomon TW, Batelaan O, De Smedt F (2006) Large-scale GIS-based hydrogeological modeling of Flanders: a tool for groundwater management. Environ Geol 50:1201–1209. doi:10.1007/s00254-006-0292-3

    Article  Google Scholar 

  • D’Agnese FA, Faunt CC, Turner AK (1998) An estimated potentiometric surface of the Death Valley Region, Nevada and California, developed using GIS and automated interpolation techniques. US Geol Surv Water Resour Invest Rep 97–4052, 15 pp

    Google Scholar 

  • Garven G (1995) Continental-scale groundwater flow and geologic processes. Annu Rev Earth Planet Sci 23:89–118. doi:10.1146/annurev.ea.23.050195.000513

    Article  Google Scholar 

  • Gleeson T, Cardiff M (2013) The return of groundwater quantity: a mega-scale and interdisciplinary “future of hydrogeology”? Hydrogeol J 21:1169–1171. doi:10.1007/s10040-013-0998-8

    Article  Google Scholar 

  • Gleeson T, Alley WM, Allen DM, Sophocleous MA, Zhou Y, Taniguchi M, VanderSteen J (2012) Towards sustainable groundwater use: setting long‐term goals, backcasting, and managing adaptively. Ground Water 50:19–26. doi:10.1111/j.1745-6584.2011.00825.x

    Article  Google Scholar 

  • Glynn PD, Plummer LN (2005) Geochemistry and the understanding of ground-water systems. Hydrogeol J 13:263–287. doi:10.1007/s10040-004-0429-y

    Article  Google Scholar 

  • Habermehl MA (1980) The Great Artesian Basin, Australia. Bur Mineral Resour J Aust Geol Geophys 5:9–38

    Google Scholar 

  • Habermehl MA, Lau JE (1997) Hydrogeology of the Great Artesian Basin Australia (map at scale 1:2,500,000). Australian Geological Survey Organisation, Canberra, Australia

    Google Scholar 

  • Halihan T, Love A, Keppel M, Berens V (2013) Analysis of subsurface mound spring connectivity in shale of the western margin of the Great Artesian Basin, South Australia. Hydrogeol J 21:1605–1617. doi:10.1007/s10040-013-1034-8

    Article  Google Scholar 

  • Herczeg AL, Torgersen T, Chivas AR, Habermehl MA (1991) Geochemistry of ground waters from the Great Artesian Basin, Australia. J Hydrol 126:225–245. doi:10.1016/0022-1694(91)90158-E

    Article  Google Scholar 

  • Hill MC (2006) The practical use of simplicity in developing ground water models. Groundwater 44:775–781. doi:10.1111/j.1745-6584.2006.00227.x

    Article  Google Scholar 

  • Hoffman PF, Grotzinger JP (1993) Orographic precipitation, erosional unloading, and tectonic style. Geology 21:195–198. doi:10.1130/0091-7613(1993)021<0195:OPEUAT>2.3.CO;2

    Article  Google Scholar 

  • Inverarity K, Hatch M, Heinson G (2013) Electrical geophysics of carbonate mound spring complexes of the south-western Great Artesian Basin. 23rd International Geophysical Conference and Exhibition, Melbourne, Australia, 11–14 August 2013

  • Jiang X-W, Wan L, Ge S, Cao G-L, Hou G-C, Hu F-S, Wang X-S, Li H, Liang S-H (2012) A quantitative study on accumulation of age mass around stagnation points in nested flow systems. Water Resour Res 48, W12502. doi:10.1029/2012WR012509

    Google Scholar 

  • Love AJ, Herczeg AL, Sampson L, Cresswell RG, Fifield LK (2000) Sources of chloride and implications for 36Cl dating of old groundwater, southwestern Great Artesian Basin, Australia. Water Resour Res 36:1561–1574. doi:10.1029/2000WR900019

    Article  Google Scholar 

  • Lusczynski NJ (1961) Head and flow of ground water of variable density. J Geophys Res 66:4247–4256. doi:10.1029/JZ066i012p04247

    Article  Google Scholar 

  • Mahara Y, Habermehl MA, Hasegawa T, Nakata K, Ransley TR, Hatano T, Mizuochi Y, Kobayashi H, Ninomiya A, Senior BR, Yasuda H, Ohta T (2009) Groundwater dating by estimation of groundwater flow velocity and dissolved 4He accumulation rate calibrated by 36Cl in the Great Artesian Basin, Australia. Earth Planet Sci Lett 287:43–56. doi:10.1016/j.epsl.2009.07.034

    Article  Google Scholar 

  • Mazor E (1995) Stagnant aquifer concept, part 1: large-scale artesian systems—Great Artesian Basin, Australia. J Hydrol 173:219–240. doi:10.1016/0022-1694(95)02706-U

    Article  Google Scholar 

  • Mazor E, Nativ R (1992) Hydraulic calculation of groundwater flow velocity and age: examination of the basic premises. J Hydrol 138(1–2):211–222

    Article  Google Scholar 

  • McCutcheon SC, Martin JL, Barnwell TO Jr (1992) Water quality. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York

    Google Scholar 

  • Moya CE, Raiber M, Cox ME (2014) Three-dimensional geological modelling of the Galilee and central Eromanga basins, Australia: new insights into aquifer/aquitard geometry and potential influence of faults on inter-connectivity. J Hydrol Reg Stud 2:119–139. doi:10.1016/j.ejrh.2014.08.007

    Article  Google Scholar 

  • Pitt GM (1986) Geothermal gradients in the Eromanga-Cooper Basin region. In: Gravestock DI, Moore PS and Pitt GM (eds) Contributions to the geology and hydrocarbon potential of the Eromanga Basin. Spec. Pub. 12, Geological Society of Australia, Sydney, pp 262–283

  • Powell O, Silcock J, Fensham R (2015) Oases to oblivion: the rapid demise of springs in the south-eastern Great Artesian Basin, Australia. Groundwater 53:171–178. doi:10.1111/gwat.12147

    Article  Google Scholar 

  • Radke BM, Ferguson J, Cresswell RG, Ransley TR, Habermehl MA (2000) Hydrochemistry and implied hydrodynamics of the Cadna-owie–Hooray Aquifer, Great Artesian Basin, Australia. Bureau of Rural Sciences, Canberra, Australia

    Google Scholar 

  • Seidel G (1980) Application of the GABHYD groundwater model of the Great Artesian Basin, Australia. Bur Mineral Resour J Aust Geol Geophys 5:39–45

    Google Scholar 

  • Senior BR, Habermehl MA (1980) Structure, hydrodynamics and hydrocarbon potential of the Central Eromanga Basin, Queensland, Australia. Bur Mineral Resour J Aust Geol Geophys 5:47–55

    Google Scholar 

  • Tonkin MJ, Larson SP (2002) Kriging water levels with a regional-linear and point-logarithmic drift. Groundwater 40:185–193. doi:10.1111/j.1745-6584.2002.tb02503.x

    Article  Google Scholar 

  • Torgersen T, Clarke WB (1985) Helium accumulation in groundwater I: an evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim Cosmochim Acta 49:1211–1218. doi:10.1016/0016-7037(85)90011-0

    Article  Google Scholar 

  • Torgersen T, Habermehl MA, Phillips FM, Elmore D, Kubik P, Jones BG, Hemmick T, Gove HE (1991) Chlorine-36 dating of very old groundwater: 3. further studies in the Great Artesian Basin, Australia. Water Resour Res 27:3201–3213. doi:10.1029/91WR02078

    Article  Google Scholar 

  • Tóth J (1978) Gravity-induced cross-formational flow of formation fluids, Red Earth Region, Alberta, Canada: analysis, patterns, and evolution. Water Resour Res 14:805–843. doi:10.1029/WR014i005p00805

    Article  Google Scholar 

  • Tóth J, Almási I (2001) Interpretation of observed fluid potential patterns in a deep sedimentary basin under tectonic compression: Hungarian Great Plain, Pannonian Basin. Geofluids 1:11–36. doi:10.1046/j.1468-8123.2001.11004.x

    Article  Google Scholar 

  • Voss CI (2011a) Editor’s Message: Groundwater modeling fantasies—part 1, adrift in the details. Hydrogeol J 19:1281–1284. doi:10.1007/s10040-011-0789-z

    Article  Google Scholar 

  • Voss CI (2011b) Editor’s Message: Groundwater modeling fantasies—part 2, down to earth. Hydrogeol J 19:1455–1458. doi:10.1007/s10040-011-0790-6

    Article  Google Scholar 

  • Welsh WD (2000) GABFLOW: a steady state groundwater flow model of the Great Artesian Basin. Bureau of Rural Sciences, Canberra, Australia

    Google Scholar 

  • Welsh WD (2006) Great Artesian Basin transient groundwater model. Bureau of Rural Sciences, Canberra, Australia

    Google Scholar 

Download references

Acknowledgements

This report emerged from a water resource assessment completed by CSIRO and Geoscience Australia. We acknowledge the contributions related to the regional hydrogeology data collection and preliminary processing by Pauline Rousseau-Gueutin, Andrew Taylor, and Phil Davies. We are thankful for discussions with Tim Ransley, Bruce Radke, Jim Kellett, Andrew Love, Rien Habermehl, and Richard Cresswell. This study was funded in part by the Australian Government under the initiative Water for the Future and the National Water Commission (NWC) Raising National Water Standards Program, and in part by CSIRO. The authors thank Luk Peeters, Matthias Raiber, Leif Wolf, and an anonymous reviewer for constructive comments on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Smerdon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smerdon, B.D., Turnadge, C. Considering the potential effect of faulting on regional-scale groundwater flow: an illustrative example from Australia’s Great Artesian Basin. Hydrogeol J 23, 949–960 (2015). https://doi.org/10.1007/s10040-015-1248-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1248-z

Keywords

Navigation