Skip to main content

Advertisement

Log in

The hydrogeology of the Condamine River Alluvial Aquifer, Australia: a critical assessment

Hydrogéologie de l’aquifère alluvial de la rivière la Condamine, Australie: analyse critique

La hidrogeología del acuífero aluvial del Río Condamine, Australia: una evaluación crítica

澳大利亚Condamine河冲积含水层的水文地质条件:决定性的评价

ההידרוגיאולוגיה של האקויפר האלוביאלי של נהר הקונדמיין (Condamine), אוסטרליה: הערכה ביקורתית

Hidrogeologia da Planície Aluvial do Rio Condamine, Austrália: avaliação crítica

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Condamine plain is an important agricultural zone in Australia with prominent irrigated cotton and grain crops. About one third of the irrigation water is pumped from the shallow alluvial aquifer, causing gross aquifer depletion over time. Over the last few decades, various hydrological, hydrochemical, and geological aspects of this aquifer and the overlying floodplain (including soil properties) have been investigated and used to construct the conceptual understanding and numerical models for management of this resource. Yet, the water balance of the aquifer is still far from resolved, and the geological contact between the alluvial sediments and underlying bedrock is yet to be categorically defined, to mention two major uncertainties. This report collates up-to-date knowledge of different disciplines, critically evaluates the accepted hydrogeological conventions, highlights key knowledge gaps, and suggests strategies for future research. Among recommendations are (1) development of numerical flow and solute transport models for the natural (i.e. pre-developed) period, (2) analysis of groundwater for isotopic composition and presence of pesticides, CFCs and PPCPs, and (3) use of stochastic approaches to characterize the hydraulic properties of the alluvial sediments. These and other proposed measures are relevant also to other alluvial aquifers which suffer from similar fundamental uncertainties.

Résumé

La plaine de la Condamine est une zone agricole importante d’Australie, avec de remarquables cultures de coton et de céréales. Environ un tiers de l’eau d’irrigation est prélevé dans l’aquifère alluvial superficiel, causant dans le temps un grave rabattement de la nappe. Au cours des quelques dernières décennies, différents aspects hydrologiques, hydrochimiques et géologiques de cet aquifère et de la plaine de débordement (incluant les propriétés du sol) ont été étudiés et utilisés pour construire les modèles conceptuels et numériques pour gérer cette ressource.Jusqu’à présent, le bilan hydrique de l’aquifère est encore loin d’être équilibré et le contact géologique entre les sédiments alluvionnaires et le substratumt doit encore à être caractérisé, pour citer deux incertitudes majeures. Cet article réunit les connaissances actuelles émanant de différentes disciplines, évalue de façon critique les hypothèses hydrogéologiques qui prévalent, met les contradictions en évidence et suggère des axes pour la recherche future. Parmi les recommandations figurent (1) le développement de modèles numériques d’écoulement et de transport des solutés dans des conditions normales (i.e. prévalentes), (2) l’analyse de la composition isotopique de l’eau et de la présence de pesticides, CFC et PPCB, et (3) l’utilisation d’approches stochastiques pour caractériser les propriétés hydrauliques des sédiments alluvionnaires.Les mesures ainsi proposées, ainsi que d’autres, concernent aussi les aquifères alluvionnaires présentant des incertitudes fondamentales similaires.

Abstract

La planicie de Condamine es una importante zona agrícola en Australia con riego prominente para cultivos de algodón y granos. Alrededor de una tercera parte del agua de riego es bombeada desde un acuífero aluvial somero, causando un grave agotamiento del acuífero con el tiempo. En las últimas décadas, se han investigado y usado varios aspectos hidrológicos, hidroquímicos y geológicos de este acuífero y de la planicie de inundación suprayacente (incluyendo las propiedades del suelo) para construir los modelos conceptuales de comprensión y numéricos para el manejo de este recurso. Sin embargo, el balance de agua del acuífero está todavía lejos de ser resuelto, y el contacto geológico entre los sedimentos aluviales y el basamento subyacente aún no se ha definido categóricamente, para mencionar dos grandes incertezas. Este trabajo recopila los conocimientos actualizados de diferentes disciplinas, evalúa críticamente las convenciones hidrogeológicas aceptadas, resalta las principales carencias del conocimiento, y sugiere estrategias para una investigación futura. Entre las recomendaciones están (1) desarrollo de modelos numéricos de flujo y de transporte de soluto para períodos naturales (es decir predesarrollados), (2) análisis del agua subterránea de su composición isotópica y la presencia de pesticidas, CFCs y PPCBs, y (3) uso de aproximaciones estocásticas para caracterizar las propiedades hidráulicas de los sedimentos aluviales. Estas y otras medidas propuestas son también relevantes para otros acuíferos aluviales que sufren de similares incertezas fundamentales.

摘要

Condamine平原是澳大利亚重要的农业地区, 主要作物为棉花和粮食。大约三分之一的灌溉用水抽自浅层冲积含水层, 随着时间的过去, 导致明显的含水层枯竭。在过去的几十年中, 对这个含水层及上覆的泛滥平原 (包括土壤特性) 的水文、水文化学和地质等方面进行了调查, 并为资源的管理构建了概念理解模型和数值模型。但是, 含水层的水平衡远没有解决, 冲积沉积层和下伏基岩之间的地质接触仍需要定义, 以论述两个主要的不确定性。本文整理了不同学科最新的知识, 评估了公认的水文地质约定, 强调了关键的知识空白, 提出了将来研究的战略建议。其中有: 1) 研发天然时期 (开发前) 的数值水流和溶质传输模型; 2) 对地下水同位素组分进行分析, 并分析是否存在农药、氯氟氰和PPCB; 3) 采用随机方法描述冲积沉积层的水力特性。这些和其它提出的措施也与其它遭受相似基本不确定性的含水层相关。

אבסטרקט

פשט ההצפה של נהר הקונדמיין, על שטחי הכותנה וגידול הגרעינים שבו, הוא אזור חקלאי חשוב באוסטרליה. כשליש ממי ההשקיה נשאבים מהאקויפר האלוביאלי הרדוד, וגורמים עם הזמן להתדלדלות אוגר המים באקויפר. בעשורים האחרונים, נחקרו היבטים הידרולוגיים, הידרו-כימיים וגיאולוגיים שונים של אקויפר זה ופשט ההצפה שמעליו (ובכלל זה תכונות הקרקע) ושימשו לביסוס ההבנה הכוללת ולבניית מודלים ממוחשבים לניהול משאב זה. עם זאת קיימים עדיין מספר פערי ידע, בין העיקריים הם חוסר הודאות אודות מאזן המים של האקויפר והמגע הגיאולוגי בין האלוביום לבין סלעי המשקע העתיקים שתחתיו.

מאמר זה מאגד את הידע המעודכן ביותר, מדיסציפלינות שונות, מעריך בצורה ביקורתית את התפיסות ההידרוגיאולוגיות המקובלות, מצביע על פערי הידע העיקריים ומתווה אסטרטגיות למחקרים עתידיים. בין ההמלצות: (1) פיתוח מודל ממוחשב לזרימה והסעה לתקופה הטבעית (לפני תחילת ההפקה), (2) ניתוח ההרכב האיזוטופי של מי התהום ונוכחות חמרי הדברה, CFC ו-PPCB במי התהום, ו-(3) שימוש בשיטות סטוכסטיות לאפיון התכונות ההידראוליות של האלוביום. אלו, ואמצעים נוספים שמוצעים, מתאימים לחקר אקויפרים אלוביאליים אחרים בהם קיימות אי-ודאות דומות.

Resumo

A planície de Condamine é uma importante zona agrícola na Austrália com significativas culturas irrigadas de algodão e cereais. Cerca de um terço da água de irrigação é bombeada desde o aquífero aluvial superficial provocando o progressivo esgotamento geral do aquífero. Ao longo das últimas décadas foram estudados vários aspetos hidrológicos, hidroquímicos e geológicos deste aquífero e da sua planície de inundação (incluindo as propriedades dos solos) que foram usados para construir modelos conceptuais de interpretação e modelos numéricos destinados à gestão deste recurso. No entanto, o balanço hídrico do aquífero está ainda longe de estar resolvido e as condições de contacto geológico entre os sedimentos aluviais e as formações de base está não estão categoricamente definidas, para mencionar duas incertezas importantes. Este trabalho compara conhecimento atualizado de diversas disciplinas, avalia criticamente as convenções hidrogeológicas aceites, destaca défices de conhecimento chave e sugere estratégias para pesquisa futura. Entre as recomendações estão (1) o desenvolvimento de modelos de fluxo e de transporte de solutos para o período natural (i.e., antes do desenvolvimento), (2) análises da composição isotópica, da presença de pesticidas e compostos CFC e PPCB na água subterrânea e (3) a utilização de abordagens estocásticas para a caracterização das propriedades hidráulicas dos sedimentos aluviais. Estas e outras medidas propostas são também relevantes para outros aquíferos aluviais que sofrem de incertezas fundamentais semelhantes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baram S, Kurtzman D, Dahan O (2012) Water percolation through a clayey vadose zone. J Hydrol 424–425:165–171

    Article  Google Scholar 

  • Barnett BG, Muller J (2008) Upper Condamine groundwater model calibration report. CSIRO Murray-Darling Basin Sustainable Yields Project, CSIRO, Clayton South, Australia, 51 pp

  • Belcher RH (1955) Progress report on Eastern Darling Downs groundwater investigation to 30th June, 1955. Queensland’s Irrigation and Water Supply Commission, Brisbane, Australia, 38 pp

  • Bengtson S (1996) Recalibration of a groundwater flow model for the Condamine groundwater management areas. Dept of Natural Resources, Toowoomba, Queensland, Australia

  • Brown KB, McIntosh JC, Rademacher LK, Lohse KA (2011) Impacts of agricultural irrigation recharge on groundwater quality in a basalt aquifer system (Washington, USA): a multi-tracer approach. Hydrogeol J 19:1039–1051

    Article  Google Scholar 

  • Calvert FJ (1958) Report on groundwater investigations Darlymple Creek: Condamine River basin to 30th June, 1958. Queensland’s Irrigation and Water Supply Commission, Brisbane, Australia, 131 pp

  • Calvert FJ (1959) Report on groundwater investigations King Creek: Condamine River basin to 30th June, 1959. Queensland’s Irrigation and Water Supply Commission, Brisbane, Australia, 117 pp

  • Calvert FJ (1960) Report on groundwater investigations: Condamine River valley to 30th November, 1959. Queensland’s Irrigation and Water Supply Commission, Brisbane, Australia, 112 pp

  • Coffey Environments Australia Ltd. (Coffey) (2012) Arrow Energy Surat gas project: groundwater impact assessment report. Coffey Environments, Canberra, 120 pp

  • Cook AG, Bryan SE, Draper JJ (2013) Post-orogenic Mesozoic basins and magmatism. In: Jell PA (ed) Geology of Queensland. Geological Survey of Queensland, Brisbane, Australia, 970 pp

  • Cox ME, James A, Hawke A, Raiber M (2013) Groundwater Visualisation System (GVS): a software framework for integrated display and interrogation of conceptual hydrogeological models, data and time-series animation. J Hydrol 491:56–72

    Article  Google Scholar 

  • CSIRO (2008) Water availability in the Condamine-Balonne: a report to the Australian government from the CSIRO Murray-Darling basin sustainable yields project. CSIRO, Brisbane, Australia, 169 pp

  • Donohue JG (1989) An investigation for groundwater recharge potential in the upper Condamine valley Queensland. MSc Thesis, Darling Downs Institute of Advance Education, Toowoomba, Australia, 38 pp

  • Exon (1976) Geology of the Surat basin in Queensland. BMR Bull 166, Bureau of Mineral Resources, Geology and Geophysics, Canberra, Australia

  • Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice-Hall, Englewood Cliffs, NJ

  • Foley J, Silburn DM, Greve A (2010) Resistivity imaging across native vegetation and irrigated Vertosols of the Condamine catchment: a snapshot of changing regolith water storage. 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010

  • GHD (2012) Surat cumulative management area groundwater model report. Rep. QWC17-10 stage 2. Queensland Water Commission, Brisbane, Australia, 119 pp

  • Giambastiani BMS, McCallum AM, Andersen MS, Kelly BFJ, Acworth RI (2012) Understanding groundwater processes by representing aquifer heterogeneity in the Maules Creek catchment, Namoi Valley (New South Wales, Australia). Hydrogeol J 20:1027–1044

    Article  Google Scholar 

  • Gloe C (1949) Report on the underground water investigations at regional experimental station Hermitage line 7: Condamine valley. Queensland’s Irrigation and Water Supply Commission, Brisbane, Australia, 10 pp

  • Golder Associates Pty Ltd (Golder) (2009) Coal seam gas field component for environmental impact statement: QGC groundwater study Surat basin, Queensland. Rep. 087633050016R. Queensland Gas Company, Brisbane, Australia

  • Greve A, Andersen MS, Acworth RI (2012) Monitoring the transition from preferential to matrix flow in cracking clay soil through changes in electrical anisotropy. Geoderma 179–180:46–52

    Article  Google Scholar 

  • Gunawardena TA, McGarry D, Robinson JB, Silburn DM (2011) Deep drainage through Vertosols in irrigated fields measured with drainage lysimeters. Soil Res 49:343–354

    Article  Google Scholar 

  • Gunn RH, Richardson DP (1979) The nature and possible origins of soluble salts in deeply weathered landscapes of eastern Australia. Aust J Soil Res 17:197–215

    Google Scholar 

  • Hansen A (1999) Groundwater vulnerability and availability mapping of the upper Condamine River catchment. Dept. of Natural Resources, Toowoomba, Queensland, Australia

  • Harris PS, Biggs AJW, Stone BJ (eds) 1999. Central Darling Downs land management manual. DNRQ990102, Dept. of Natural Resources, Queensland, Toowoomba, Australia

  • Herczeg AL, Torgersen T, Chivas AR, Habermehl MA (1991) Geochemistry of groundwater from the Great Artesian Basin, Australia. J Hydrol 126:225–245

    Article  Google Scholar 

  • Hillier J (2010) Groundwater connections between the Walloon coal measures and the alluvium of the Condamine River. Central Downs Irrigators, Dalby, Australia

  • Howe JE (1974) Condamine Valley groundwater investigations: hydro-geological investigation of the area between Oakey and Leyburn. Record 1974/39, Geological Survey of Queensland, Brisbane, Australia, 28 pp

  • Hulugalle NR, Weaver TB, Finlay LA (2010) Soil water storage and drainage under cotton-based cropping systems in a furrow-irrigated Vertisol. Agric Water Manag 97:1703–1710

    Article  Google Scholar 

  • Huxley WJ (1982) Condamine River valley groundwater investigation: the hydrogeology, hydrology and hydrochemistry of the Condamine River valley alluvium. Queensland’s Water Resources Commission, Brisbane, Australia

  • KCB (Klohn Crippen Berger) (2010a) Central Condamine alluvium, stage I: data availability report. Ref. M09631A01. Dept. of Environment and Resource Management, Queensland, Toowoomba, Australia

  • KCB (Klohn Crippen Berger) (2010b) Central Condamine alluvium, stage II: conceptual hydrogeology study. Ref. M09631A02. Dept. of Environment and Resource Management, Queensland, Toowoomba, Australia

  • KCB (Klohn Crippen Berger) (2011a) Central Condamine alluvium, stage III: detailed water balance. Final report,. Ref. M09631A02. Dept. of Environment and Resource Management, Queensland,Toowoomba, Australia

  • KCB (Klohn Crippen Berger) (2011b) Central Condamine alluvium, stage IV: numerical modelling. Dept. of Environment and Resource Management, Queensland, Toowoomba, Australia

  • KCB (Klohn Crippen Berger) (2011c) Activity 1.1: Walloon Coal Measures hydrogeological conceptualisation, task 2 Geological and hydrogeological interpretation. Healthy HeadWaters Coal Seam Gas Water Feasibility Study, Dept. of Environment and Resource Management, Queensland, Toowoomba, Australia

  • KCB (Klohn Crippen Berger) (2011d) Activity 6.1: injection of coal seam gas water into the Central Condamine Alluvium—technical feasibility assessment, final report. Healthy HeadWaters Coal Seam Gas Water Feasibility Study, Dept. of Environment and Resource Management, Queensland, Toowoomba, Australia

  • KCB (Klohn Crippen Berger) (2012) Activity 8.2: injection of coal seam gas water into the Central Condamine Alluvium—site prioritisation. Healthy HeadWaters Coal Seam Gas Water Feasibility Study, Dept. of Environment and Resource Management, Queensland, Toowoomba, Australia

  • Kellett JR, Ransley TR, Coram J, Jaycock J, Barclay DF, McMahon GA, Foster LM, Hillier JR (2003) Groundwater recharge in the Great Artesian Basin intake beds, Queensland. NHT project no. 982713, Bureau of Rural Science, Canberra and Natural Resources and Mines, Queensland, Toowoomba, Australia

  • Kelly B, Merrick N (2007) Groundwater knowledge and data gaps in the Condamine Alliance area. Rep. 2006/9d, the National Centre for Groundwater Managements, University of Technology, Sydney

  • Kurtzman D, Scanlon BR (2011) Groundwater recharge through Vertisols: irrigated cropland versus natural land, Israel. Vadose Zone J 10:662–674. doi:10.2136/vzj2010.0109

    Article  Google Scholar 

  • Lane WB (1979) Progress report on Condamine underground investigation to December 1978. Queensland’s Water Resources Commission, Brisbane, Australia, 262 pp

  • Lloyd JC (1971) Condamine Valley investigations: analysis of pump tests on private bores—Macalister to Leyburn. Queensland’s Irrigation and Water Supply Commission, Brisbane, Australia, 68 pp

  • Lumsden AC (1966) Condamine Valley groundwater investigations: hydrogeological report on eight 1:50,000 map sheets. Record 1966/10, Geological Survey of Queensland, Brisbane, Australia, 28 pp

  • McNeil A (1976) Condamine recharge investigation: 1976 resistivity survey. Queensland’s Irrigation and Water Supply Commission, Brisbane, Australia

  • McNeil VH, Horn AM (1997) Groundwater salinity trends in the northern Murray-Darling basin. Murray-Darling Basin Workshop, Toowoomba, Australia

    Google Scholar 

  • McNeil A, Yeates H (1973) Upper Condamine resistivity measurements. Queensland’s Irrigation and Water Supply Commission, Brisbane, Australia, 5 pp

  • Morse JE (1950) Report on the underground water recourses investigations in the Condamine River valley. Queensland’s Irrigation and Water Supply Commission, Brisbane, Australia, 10 pp

  • Moss J, Gordon IJ, Zischke R (2001) Best management practices to minimise below root zone impacts of irrigated cotton. Final report to the Murray-Darling Basin Commission (Project I6064), March 2001. Dept. of Natural Resources and Mines, Queensland, Toowoomba, Australia

  • Parsons S, Evans R, Hoban M (2008) Surface–groundwater connectivity assessment: a report to the Australian government from the CSIRO Murray-Darling Basin sustainable yields project. CSIRO, Brisbane, Australia, 35 pp

  • Pearce BR, Hansen JWL, Stegler J-CP, Lee, RB, Jackson JA (2006) Hydrogeological investigation of the Northeast Darling Downs region, southern Queensland, Australia. Report QNRM06240, Water Assessment Group, Dept. of Natural Resources, Mines and Water, Toowoomba, Australia

  • QWC (Queensland Water Commission) (2012) Underground water impact report: Surat cumulative management area. QWC, Brisbane, Australia, 98 pp

  • Radford BJ, Silburn DM, Forster BA (2009) Soil chloride and deep drainage responses to land clearing for cropping at seven sites in central Queensland, northern Australia. J Hydrol 379:20–29. doi:10.1016/j.jhydrol.2009.09.040

    Article  Google Scholar 

  • Richard M (1991) Condamine groundwater investigation: report on recalibration of the Condamine Groundwater Management Area groundwater flow model. Queensland’s Water Resources Commission, Brisbane, Australia

  • Ringrose-Voase, Nadelko T (2012) Measuring deep drainage under irrigated cotton with the A.C.R.I. lysimeter. Proceedings of the 16th Australian Cotton conference, Broadbeach, Australia, August 2012. http://www.australiancottonconference.com.au/2012-presentations-papers/ringrose-voase-anthony. Accessed 5 October 2013

  • Scanlon BR, Reedy RC, Tachovsky JA (2007) Semiarid unsaturated zone chloride profiles: archives of past land use change impacts on water resources in the southern High Plains, United States. Water Resour Res 43: doi:10.1029/2006WR005769

  • Scanlon BR, Reedy RC, Gates JB (2010) Effects of irrigated agroecosystems: 1. quantity of soil water and groundwater in the southern High Plains, Texas. Water Resour Res 46, W09537. doi:10.1029/2009WR008427

    Google Scholar 

  • Schlumberger (Schlumberger Water Services Australia) (2011) Groundwater modelling of the Surat Basin. Rep. 6-114/R4, and appendix B of Coffey, 2012. Arrow Energy, Brisbane, Australia, 52 pp

  • Shaw RJ (1995) A unified soil property and sodicity model of salt leaching and water movement. PhD Thesis, University of Queensland, Brisbane, Australia

  • Shaw MS, Silburn DM, Lenahan M, Harris M (2012) Pesticides in groundwater in the Lower Burdekin floodplain. Dept. of Environment and Resource Management, Queensland, Brisbane, Australia, 18 pp

  • Silburn DM, Montgomery J (2004) Deep drainage under irrigated cotton in Australia, a review, chap. 2.4. In: Dugdale H, Harris G, Neilsen J, Richards D, Roth G, Williams D (eds) WATERpak: a guide for irrigation management in cotton. Cotton Research and Development Corporation, Narrabri, Australia, pp 29–40

  • Silburn DM, Biggs AJW, Owens JS, Tolmie PE, Foley JL, Cresswell RG (2008) Salinity in Queensland: hydrologic change from soils to catchments. 2nd Int. Salinity Forum: Salinity, Water and Society—Global Issues, Local Action, Adelaide, Australia , 31 March–03 April 2008

  • Silburn DM, Cowie BA, Thornton CM (2009) The Brigalow Catchment Study revisited: effects of land development on deep drainage determined from non-steady chloride profiles. J Hydrol 373:487–498

    Article  Google Scholar 

  • Silburn DM, Tolmie PE, Biggs AJW, Whish JPM, French V (2011) Deep drainage rates of Grey Vertosols depend on land use in semi-arid subtropical regions of Queensland, Australia. Soil Res 49:424–438

    Article  Google Scholar 

  • Silburn DM, Montgomery J, McGarry D, Gunawardena T, Foley J, Ringrose-Voase A, Nadelko T (2013) Deep drainage under irrigated cotton in Australia: a review, chap. 1.5. In: WATERpak: a guide for irrigation management in cotton. Cotton Research and Development Corporation, Narrabri, Australia

  • SKM (Sinclair Knight Merz) (1999) Conjunctive water use study: upper Condamine River interim report. Darling Downs Vision 2000, Dept. of Natural Resources, Brisbane, Australia

  • SKM (Sinclair Knight Merz) (2003) Effluent reuse study, Darling Downs: South East Queensland effluent reuse—treated effluent irrigation on the Darling Downs. SKM, Sydney

  • Smith RJ, Raine SR, Minkevich J (2005) Irrigation application efficiency and deep drainage potential under surface irrigated cotton. Agric Water Manag 71:117–130

    Article  Google Scholar 

  • Tan PL, Mooney C, White I, Hoverman S, Mackenzie J, Burry K, Baldwin C, Bowmer K, Jackson S, Ayre M, George D (2010) Tools for water planning: lessons, gaps and adoption. Waterlines report no. 37, National Water Commission, Canberra, Australia

  • Tan PL, Baldwin C, White I, Barry K (2012) Water planning in the Condamine Alluvium, Queensland: sharing information and eliciting views in a context of overallocation. J Hydrol 474:84–91

    Article  Google Scholar 

  • Thorburn PJ, Rose CW, Shaw RJ, Yule DF (1990) Interpretation of solute profile dynamics in irrigated soils. 1. Mass balance approaches. Irrig Sci 11:199–207

    Article  Google Scholar 

  • Tolmie PE, Silburn DM, Biggs AJW (2004) Estimating deep drainage in the Queensland Murray-Darling Basin using soil chloride. Rep. QNRM03020, Dept. of Natural Resources and Mines, Queensland, Toowoomba, Australia

  • Tolmie PE, Silburn DM, Biggs AJW (2011) Deep drainage and soil salt loads in the Queensland Murray-Darling Basin using soil chloride: comparison of land uses. Soil Res 49:408–243

    Article  Google Scholar 

  • USQ (University of Southern Queensland) (2011) Preliminary assessment of cumulative drawdown impacts in the Surat Basin associated with the coal seam gas industry, Queensland. USQ, Toowoomba, Australia

  • Vandersee BE (1975) Land inventory and technical guide eastern Darling Downs area Queensland. Division of Land Utilisation technical bulletin no. 7. Dept. of Primary Industries, Queensland, Brisbane, Australia

  • Waters D (2004) Water quality in Queensland catchments and the cotton industry. In: Dugdale H, Harris G, Neilsen J, Richards D, Roth G, Williams D (eds) WATERpak: a guide for irrigation management in cotton. Cotton Research and Development, Narrabri, Australia, pp 281–287

  • Welsh WD (2006) Great Artesian Basin: transient groundwater model. Bureau of Rural Sciences, Canberra, Australia

  • Willis TM, Black AS (1996) Irrigation increases groundwater recharge in the Macquarie Valley. Aust J Soil Res 34:837–847

    Article  Google Scholar 

  • Willis TM, Black AS, Meyer WS (1997) Estimates of deep percolation beneath cotton in the Macquarie Valley. Irrig Sci 17:141–150

    Article  Google Scholar 

  • WorleyParsons (2010) Australia Pacific LNG Project. Attachment 21: ground water technical report—gas fields. WorleyParsons, Sydney, 175 pp

  • Yee Yet J, Silburn DM (2003) Deep drainage estimates under a range of land uses in the Queensland Murray–Darling Basin using water balance modelling. Report no. QNRM03021, Dept. of Natural Resources and Mines, Queensland, Toowoomba, Australia

  • Young S (1990) A groundwater flow model of the Condamine groundwater management area. Queensland’s Water Resources Commission, Brisbane, Australia

  • Zhang L, Dawes WR, Walker GR (2001) Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour Res 37(3):701–708

    Article  Google Scholar 

  • Zheng C, Bennett GD (2002) Applied contaminant transport modeling. Wiley, New York, 621 pp

    Google Scholar 

Download references

Acknowledgements

The authors thank (in alphabetical order) Dr. Andrew Biggs (DNRM), Prof. Malcolm Cox (QUT), Dr. Anthony Duah (UWC, South Africa), Prof. John Warden (USQ), and two anonymous reviewers for their constructive comments which led to improvement of this manuscript. The corresponding author especially thanks Mr. Howard Rother for a first hand introduction to the cotton growing industry in the Condamine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elad Dafny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dafny, E., Silburn, D.M. The hydrogeology of the Condamine River Alluvial Aquifer, Australia: a critical assessment. Hydrogeol J 22, 705–727 (2014). https://doi.org/10.1007/s10040-013-1075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-1075-z

Keywords

Navigation