Skip to main content
Log in

A laboratory study of tracer tomography

Une étude en laboratoire de tomographie par traceur

Un estudio de laboratorio de tomografía de trazadores

示踪剂断层摄影术室内研究

Un estudio de laboratorio de tomografía de trazadores

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A tracer tomographic laboratory study was performed with consolidated fractured rock in three-dimensional space. The investigated fractured sandstone sample was characterized by significant matrix permeability. The laboratory transport experiments were conducted using gas-flow and gas-tracer transport techniques that enable the generation of various flow-field patterns via adjustable boundary conditions within a short experimental time period. In total, 72 gas-tracer (helium) tests were performed by systematically changing the injection and monitoring configuration after each test. For the inversion of the tracer breakthrough curves an inversion scheme was applied, based on the transformation of the governing transport equation into a form of the eikonal equation. The reliability of the inversion results was assessed with singular value decomposition of the trajectory density matrix. The applied inversion technique allowed for the three-dimensional reconstruction of the interstitial velocity with a high resolution. The three-dimensional interstitial velocity distribution shows clearly that the transport is dominated by the matrix while the fractures show no apparent influence on the transport responses.

Résumé

Une étude en laboratoire de tomographie par traceur a été réalisée sur une roche fracturée consolidée dans un espace à 3 dimensions. L’échantillon de grès fracturé étudié se caractérisait par une perméabilité de matrice élevée. Les expériences de traçage en laboratoire ont été conduites en utilisant des techniques de transfert d’un courant gazeux et d’un traceur gazeux permettant la création de modèles variés de champ d’écoulement, grâce à des conditions aux limites ajustables dans un laps de temps expérimental court. Au total, 72 tests avec traceur gazeux (hélium) ont été réalisés, en changeant systématiquement la configuration de l’injection et du système de mesure après chaque test. Pour l’inversion des courbes de marquage du traceur, on a appliqué un procédé d’inversion basé sur la transformation de l’équation de transfert principale en une forme d’équation iconale. La fiabilité des résultats de l’inversion a été démontrée par une décomposition en valeurs singulières de la matrice densité de trajectoire. La technique de l’inversion appliquée a tenu compte de la reconstruction à 3 dimensions de la vitesse interstitielle avec une haute résolution. La distribution de la vitesse interstitielle en 3 dimensions montre clairement que le transfert est contrôlé par la matrice tandis que les fractures ne montrent pas d’influence apparente sur les réponses du transfert.

Resumen

Se llevó a cabo un estudio tomográfico de laboratorio de trazadores en roca fracturada consolidada en el espacio tridimensional. La muestra investigada de arenisca fracturada se caracterizó por la significativa permeabilidad de la matriz. Los experimentos de transporte de laboratorio fueron realizados usando flujo de gas y técnicas de transporte de trazadores que permite la generación de varios esquemas de campos de flujo de campo a través de condiciones de límites ajustables dentro de corto periodo de tiempo experimental. En total, 72 pruebas con gas trazador (helio) fueron realizados cambiando sistemáticamente la configuración de inyección y monitoreo después de cada prueba. Para la inversión de las curvas de ruptura del trazador un esquema de inversión, basado en la transformación de una ecuación de transporte gobernante se aplica una forma de la ecuación eikonal. La confiabilidad de los resultados de inversión fue evaluada con una descomposición en valores singulares de la matriz de densidad de la trayectoria. La técnica de inversión aplicada permitió la reconstrucción tridimensional de la velocidad intersticial con una alta resolución. La distribución de la velocidad intersticial tridimensional muestra claramente que el transporte está dominado por la matriz mientras que las fracturas no muestran una influencia aparente en las respuestas de transporte.

摘要

对坚固裂隙岩体进行了三维空间示踪剂断层摄影术实验室研究。调查的断裂砂岩样品特点是具有显著的基质渗透率。采用气流和气体示踪运移技术进行了实验室运移实验,这些技术能够在短的试验时段内产生通过可调边界条件的各种流场模式。总共进行了72项气体示踪(氦)试验,每个试验后都系统地调整注入和监测配置。针对示踪剂突破曲线的反演,采用了基于调整运移公式转化成程函公式的反演方法。采用轨迹密度矩阵的奇值分解对反演结果的可靠性进行了评估。应用的反演技术可三维重建具有高分辨率的间隙速度。三维间隙流速分布清楚地表明,运移主要受控于基质,而断裂显示对运移反应无明显影响。

Resumo

Foi levado a cabo um estudo laboratorial de tomografia de um traçador, no espaço tridimensional, numa rocha consolidada fraturada. A amostra estudada, arenito fraturado, foi caraterizada por permeabilidade matricial significativa. Os testes laboratoriais de transporte foram realizados utilizando técnicas de transporte de fluxo de gás e de gás traçador que permitiram a geração de vários padrões de campo de fluxo através de condições de fronteira ajustáveis dentro de um período de tempo experimental curto. No total foram realizados 72 testes de gás traçador (hélio), alterando sistematicamente o esquema de injeção e de monitorização após cada teste. Para inversão das curvas de chegada do traçador foi aplicado um esquema de inversão, a partir da transformação da equação de transporte numa forma da equação iconal. A confiança dos resultados da inversão foi avaliada pela decomposição em valores singulares da matriz densidade da trajetória. A técnica de inversão aplicada permitiu a reconstrução tridimensional da velocidade intersticial com uma alta resolução. A distribuição da velocidade intersticial tridimensional mostra claramente que o transporte é dominado pela matriz, enquanto as fraturas não mostram, aparentemente, ter influência nas respostas de transporte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berg SJ, Illman WA (2011) Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system. Water Resour Res 47:W10507. doi:10.1029/2011WR010616

    Google Scholar 

  • Böhm G, Vesnaver A (1996) Relying on a grid. J Seism Explor 5:169–184

    Google Scholar 

  • Brauchler R, Liedl R, Dietrich P (2003) A travel time based hydraulic tomographic approach. Water Resour Res 39(12):1370

    Article  Google Scholar 

  • Brauchler R, Hu R, Vogt T, Al-Halbouni D, Heinrichs T, Ptak T, Sauter M (2010) Cross-well slug interference tests: an effective characterization method for resolving aquifer heterogeneity. J Hydrol 384(1–2):33–45

    Article  Google Scholar 

  • Brauchler R, Hu R, Dietrich P, Sauter M (2011) A field assessment of high resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography. Water Resour Res 47:W03503

    Article  Google Scholar 

  • Brauchler R, Doetsch J, Dietrich P, Sauter M (2012) Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography. Water Resour Res 48:W03531. doi:10.1029/2011WR010868

    Article  Google Scholar 

  • Brauchler R, Hu R, Hu L, Jimenez S, Bayer P, Ptak T (2013) Rapid field application of hydraulic tomography for resolving aquifer heterogeneity in unconsolidated sediments. Water Resour Res. doi:10.1002/wrcr.20181

    Google Scholar 

  • Butler JJ Jr (2005) Hydrogeological methods for estimation of hydraulic conductivity. In: Rubin Y, Hubbard S (eds) Hydrogeophysics. Dordrecht, Springer

    Google Scholar 

  • Cardiff M, Barrash W, Kitanidis PK, Malama B, Revil A, Straface S, Rizzo E (2009) A potential-based inversion of unconfined steady-state hydraulic tomography. Ground Water 47(2):259–270. doi:10.1111/j.1745-6584.2008.00541.x

    Article  Google Scholar 

  • Cardiff M, Barrash W, Kitanidis PK (2012) A field proof-of-concept of aquifer imaging using 3D transient hydraulic tomography with modular, temporarily-emplaced equipment. Water Resour Res 48:W05531. doi:10.1029/2011WR011704

    Article  Google Scholar 

  • Datta-Gupta A, Yoon S, Vasco DW, Pope GA (2002) Inverse modeling of partitioning interwell tracer tests: a streamline approach. Water Resour Res 38(6):1079

    Article  Google Scholar 

  • Dines KA, Lytle RJ (1979) Computerized geophysical tomography. Proc IEEE 67(7):1065–1073

    Article  Google Scholar 

  • Einarson MD, Cherry JA (2002) A new multilevel ground water monitoring system using multichannel tubing. Ground Water Monit Rem 22(4):52–65

    Article  Google Scholar 

  • Gilbert P (1972) Iterative methods for three-dimensional reconstruction of an object from projections. J Theor Biol 36:105–117

    Article  Google Scholar 

  • Gordon R (1979) A tutorial on ART (algebraic reconstruction techniques). IEEE Trans Nucl Sci NS-21(17):78–93

    Google Scholar 

  • Gottlieb J, Dietrich P (1995) Identification of the permeability distribution in soil by hydraulic tomography. Inverse Problems 11:353–360

    Article  Google Scholar 

  • Hornung J, Aigner T (1999) Reservoir and aquifer characterization of fluvial architectural elements: Stubensandstein, Upper Triassic, southwest Germany. Sediment Geol 129:215–280

    Article  Google Scholar 

  • Hornung J, Aigner T (2002) Reservoir architecture in a terminal alluvial plain: an outcrop analogue study (Upper Triassic, Southern Germany), part 1: sedimentology and petrophysics. J Pet Geol 25(1):3–29

    Article  Google Scholar 

  • Hu R, Brauchler R, Herold M, Bayer P (2011) Hydraulic tomography analog outcrop study: combining travel time and steady shape inversion. J Hydrol 409(1–2):350–362. doi:10.1016/j.jhydrol.2011.08.031

    Article  Google Scholar 

  • Huang S-Y, Wen J-C, Yeh T-CJ LW, Juan H-L, Tseng C-M, Lee J-H, Chang K-C (2011) Robustness of joint interpretation of sequential pumping tests: numerical and field experiments. Water Resour Res 47:W10530. doi:10.1029/2011WR010698

    Article  Google Scholar 

  • Illman WA, Liu X, Takeuchi S, Yeh TJ, Ando K, Saegusa H (2009) Hydraulic tomography in fractured granite: Mizunami Underground Research site. Japan Water Resour Res 45:W01406

    Google Scholar 

  • Illman WA, Berg SJ, Liu X, Massi A (2010) Hydraulic/partitioning tracer tomography for DNAPL source zone characterization: small-scale sandbox experiments. Environ Sci Technol 44:8609–8614

    Article  Google Scholar 

  • Leven C, Sauter M, Teutsch G, Dietrich P (2004) Investigation of the effects of fractured porous media on hydraulic tests: an experimental study at laboratory scale using single well methods. J Hydrol 297:95–108

    Article  Google Scholar 

  • Leven C, Brauchler R, Dietrich P (2005) Experiments: laboratory block. In: Dietrich P, Helmig R, Sauter M, Hötzl H, Köngeter J, Teutsch G (eds) Flow and transport in porous fractured media. Springer, Berlin, 25 pp

    Google Scholar 

  • Li W, Englert A, Cirpka OA, Vereecken H (2008) Three-dimensional geostatistical inversion of flowmeter and pumping test data. Ground Water 46(2):193–201

    Article  Google Scholar 

  • McDermott CI (1999) New experimental and modelling techniques to investigate the fractured porous system, Tübinger Geowiss. Arb., Reihe C, 52, Cent. for Appl. Geosci., Tübingen, Germany, 166 pp

    Google Scholar 

  • McDermott C, Sauter M, Liedl R (2003) New experimental techniques for pneumatic tomographical determination of the flow and transport parameters of highly fractured porous rock samples. J Hydrol 278:51–63

    Article  Google Scholar 

  • Paige CC, Saunders MA (1982) LSQR: an algorithm for sparse linear equations and sparse least squares. TOMS 8(1):43–71

    Article  Google Scholar 

  • Peterson JE, Paulsson BNP, McEvilly TV (1985) Application of algebraic reconstruction techniques to crosshole seismic data. Geophysics 50:1566–1580

    Article  Google Scholar 

  • Ptak T, Piepenbrink M, Martac E (2004) Tracer tests for the investigation of heterogeneous porous media and stochastic modelling of flow and transport: a review of some recent developments. J Hydrol 29:122–163

    Article  Google Scholar 

  • Straface S, Yeh T-CJ, Zhu J, Troisi S, Lee CH (2007) Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy. Water Resour Res 43:W07432

    Article  Google Scholar 

  • Tosaka H, Masumoto K, Kojima K (1993) Hydropulse tomography for identifying 3-D permeability distribution. High Level Radioactive Waste Management Proceedings of the Fourth Annual International Conference, Las Vegas, NV, April 1993, ASCE, Reston, VA

  • Vasco DW, Datta-Gupta A (1999) Asymptotic solutions for solute transport: a formalism for tracer tomography. Water Resour Res 35(1):1–16

    Article  Google Scholar 

  • Vesnaver A, Böhm G (2000) Staggered or adapted grids for seismic tomography. Leading Edge 19(9):944–950

    Article  Google Scholar 

  • Yeh T-CJ, Liu S (2000) Hydraulic tomography: development of a new aquifer test method. Water Resour Res 36(8):2095–2105

    Article  Google Scholar 

  • Yeh T-CJ, Simunek J (2002) Stochastic fusion of information for characterizing and monitoring the vadose zone. Vadose Zone J 1(2):207–221

    Google Scholar 

  • Yeh T-CJ, Zhu J (2007) Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones. Water Resour Res 47:W06435

    Google Scholar 

  • Zhu J, Cai X, Yeh T-CJ (2009) Analysis of tracer tomography using temporal moments of tracer breakthrough curves. Adv Water Resour 32:391–400

    Article  Google Scholar 

Download references

Acknowledgements

The investigations were conducted with the financial support of the Swiss National Science Foundation to the project “A field assessment of high-resolution aquifer characterization: an integrated approach combining hydraulic tomography and tracer tomography” under grant number 200021_140450 / 1 and the financial support of the German Research Foundation to the project “Hard Rock Aquifer Analogue: Experiments and Modeling” project under grant DI833/1-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Brauchler.

Appendices

Appendix 1: SIRT algorithm

The description of the SIRT algorithm with regard to the inversion of tracer breakthrough curves, given in the following, is partly based on the work proposed by Dines and Lytle (1979) and by Hu et al. (2011) in context of the inversion of seismic signals and hydraulic transient pressure signals, respectively.

The interstitial or mean velocity v m of a conservative tracer can be expressed by the following line integral, which relates the peak arrival time of a conservative tracer, assuming a pulse injection, to the ratio between porosity and hydraulic conductivity K multiplied by the potential head Φ (Vasco and Datta-Gupta, 1999):

$$ {t}_{\mathrm{t}}\left({x}_2\right)={\displaystyle \underset{x_1}{\overset{x_2}{\int }}\frac{n(s)}{K(s)\phi (s)}ds={\displaystyle \underset{x_1}{\overset{x_2}{\int }}\frac{ds}{v_{\mathrm{m}}(s)},}} $$
(7)

where t t is the travel time of the peak of a tracer signal between point x1 (source) and the observation point x2 (receiver) along the propagation path (s).

The integral (Eq. 7) can be transformed into a discrete inverse problem by approximating the integral with a summation

$$ {t}_{\mathrm{t},\mathrm{i}}={\displaystyle \sum_{j=1}^n\frac{1}{v_{\mathrm{m},\mathrm{j}}}{d}_{\mathrm{ij}}} $$
(8)

where d ij is the distance along trajectory i in cell j and v m,j is the average interstitial velocity within cell j. The applied SIRT algorithm for solving Eq. (8) is based on an iterative technique, where one equation (one trajectory) is analysed at a time. The algorithm requires an initial estimate of the average interstitial velocity. The interstitial velocity is calculated along each trajectory as follows:

$$ {t}_{\mathrm{t},\mathrm{i}}={\displaystyle \sum_{j=1}^n\frac{1}{v_{\mathrm{m},\mathrm{j}}^{\mathrm{q}}}{d}_{\mathrm{ij}},} $$
(9)

where v qm,j indicates the estimated interstitial velocity after the qth iteration. The applied SIRT algorithm minimizes for each source-receiver configuration the least squares residual between the predicted and the measured peak tracer arrival time,

$$ \varDelta {t}_{\mathrm{t},\mathrm{i}}=\left[{t}_{\mathrm{t},\mathrm{i}}^{\mathrm{m}}-{t}_{\mathrm{t},\mathrm{i}}^{\mathrm{e}}\right]={\displaystyle \sum_{j=1}^n\left(\varDelta \frac{1}{v_{\mathrm{m},\mathrm{j}}^{\mathrm{q}}}{d}_{\mathrm{ij}}\right)} $$
(10)

with t mt,i the measured travel time, t et,i the estimated travel time, Δt t,i the difference of the ith measured and estimated peak tracer arrival time and \( {t}_{\mathrm{t},\mathrm{i}}^{\mathrm{m}} \) describes the applied changes to cell j of the qth iteration. Following Dines and Lytle (1979) an additional minimum criterion can be defined for the determination of the distribution of \( \frac{1}{v_{\mathrm{m},\mathrm{j}}^{\mathrm{q}}} \):

$$ f\left(\varDelta \frac{1}{v_{\mathrm{m},\mathrm{j}}^{\mathrm{q}}}\right)={\displaystyle \sum_{j=1}^n{\left(\varDelta \frac{1}{v_{\mathrm{m},\mathrm{j}}^{\mathrm{q}}}\right)}^2\to \min .} $$
(11)

Minimizing the function f subject to Eq. (10) yields an update of the interstitial velocity for each cell sampled by trajectory i. For the minimization the Lagrange multipliers method can be utilized. Thereby the new function K is minimized:

$$ K={\displaystyle \sum_{j=1}^n\left[{\left(\varDelta \frac{1}{v_{\mathrm{m},\mathrm{j}}^{\mathrm{q}}}\right)}^2-\lambda \varDelta \frac{1}{v_{\mathrm{m},\mathrm{j}}^{\mathrm{q}}}{d}_{\mathrm{i},\mathrm{j}}\right]+\lambda \varDelta {t}_{\mathrm{t},\mathrm{i}}} $$
(12)

The first derivative becomes zero if:

$$ \varDelta \frac{1}{v_{\mathrm{m},\mathrm{j}}^{\mathrm{q}}}=\frac{\lambda {d}_{\mathrm{i},\mathrm{j}}}{2} $$
(13)

Substituting Eq. (13) into Eq. (10) λ can be expressed as follows:

$$ \lambda =\frac{2\varDelta {t}_{\mathrm{t},\mathrm{i}}}{{\displaystyle \sum_{j=1}^n{d}_{\mathrm{i},\mathrm{j}}^2}} $$
(14)

The final solution is achived by substituting Eq. (14) into Eq. (13). The Lagrange multipliers method leads for a particular trajectory i, in the qth iteration to the incremental correction:

$$ \varDelta \frac{1}{v_{\mathrm{m},\mathrm{j}}^{\mathrm{q}}}=\frac{\varDelta {t}_{\mathrm{t},\mathrm{i}}{d}_{\mathrm{ij}}}{{\displaystyle \sum_{j=1}^n{d}_{\mathrm{ij}}^2}} $$
(15)

The corrections are applied by averaging the incremental corrections of each single cell after all N trajectories have been analysed:

$$ \varDelta \frac{1}{v_{\mathrm{m},\mathrm{j}}^{\mathrm{q}}}=\frac{1}{M_{\mathrm{j}}}{\displaystyle \sum_{i=1}^N\varDelta \frac{1}{v_{\mathrm{m},\mathrm{j}}^{\mathrm{q}}}} $$
(16)

where M j is the number of trajectories passing through cell j.

Appendix 2: minimum time principle

Figure 7 displays two points A and B that are located in two half-spaces. The two half-spaces are characterized by their velocities v 1 and v 2. In order to minimize the travel time of an induced signal traveling between point A and B, a third point P located on the interface between the two half-spaces is introduced. The travel time between A and B can be expressed as follows:

$$ f(x)=\frac{\sqrt{a^2+{x}^2}}{v_1}+\frac{\sqrt{a{b}^2+{\left(c-x\right)}^2}}{v_2} $$
(17)

The minimum travel time can be found by setting the first derivative to zero:

$$ f\prime (x)=\left[{b}^2+{\left(c-x\right)}^2\right]{x}^2-\frac{\left[{v}_1^2{\left(c-x\right)}^2\left({a}^2+{x}^2\right)\right]}{v_2^2}=0 $$
(18)

The value x can be determined with the bisection method.

Fig. 7
figure 7

Schematic illustrating the minimum-velocity algorithm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brauchler, R., Böhm, G., Leven, C. et al. A laboratory study of tracer tomography. Hydrogeol J 21, 1265–1274 (2013). https://doi.org/10.1007/s10040-013-1006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-1006-z

Keywords

Navigation