Skip to main content
Log in

Exact and approximate analytical solutions of groundwater response to tidal fluctuations in a theoretical inhomogeneous coastal confined aquifer

Solutions analytiques exactes et approchées de la réponse des nappes d’eau souterraines aux fluctuations induites par la marée dans un aquifère captif côtier non homogène théorique

Soluciones analíticas exacta y aproximada de la respuesta de las aguas subterráneas a las fluctuaciones de marea en un acuífero costero confinado e inhomogéneo de tipo teórico

理论非均质海岸承压含水层中地下水对潮汐波动响应的精确及近似解析解

Soluções analíticas exatas e aproximadas de resposta das águas subterrâneas às flutuações de maré num aquífero costeiro teórico confinado heterogéneo

  • Technical Note
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The influence of hydraulic conductivity heterogeneity on tide-induced head fluctuations is presented for a theoretical coastal confined aquifer. The conceptual model assumes that the hydraulic conductivity increases linearly with the distance from the coastline. This type of heterogeneity has been observed in many alluvial coastal aquifers. An exact analytical solution that predicts induced head fluctuations is obtained in terms of a Hankel function. The exact solution can be approximated by a simple mathematical expression, valid for small rates of increase of hydraulic conductivity. Both exact and approximate solutions show significant differences from the classical solution obtained for a homogeneous aquifer. Near the coastline the amplitude of the induced head fluctuation is damped but it is enhanced as the distance to the coast increases. The time-lag between sea tide and induced head fluctuation in the aquifer is not linear; it behaves as a square-root type function leading to a faster transmission of the tidal fluctuation. Hypothetical examples show that the influence of hydraulic conductivity heterogeneity can be significant and should be considered for a correct description of the groundwater response.

Résumé

L’influence de l’hétérogénéité de la perméabilité sur les fluctuations piézométriques induites par la marée est présentée pour un aquifère captif côtier théorique. Le modèle conceptuel suppose que la perméabilité augmente linéairement avec la distance au littoral. Ce type d’hétérogénéité a été observé dans de nombreux aquifères côtiers alluviaux. Une solution analytique exacte qui prédit les fluctuations piézométriques induites est obtenue sous la forme d’une fonction de Hankel. La solution exacte peut être approchée par une expression mathématique simple, valide pour de faibles taux d’augmentation de la perméabilité. Les deux solutions, approchée et exacte, montrent des différences significatives avec la solution classique obtenue pour un aquifère homogène. Près du littoral, l’amplitude des fluctuations piézométriques est atténuée, mais elle amplifiée lorsque la distance au littoral augmente. Le déphasage entre la marée marine et les fluctuations piézométriques induites dans l’aquifère n’est pas linéaire. Il se comporte comme une fonction de type racine carrée, ce qui implique une transmission plus rapide de la fluctuation de marée. Des exemples hypothétiques montrent que l’influence de l’hétérogénéité de la perméabilité peut être significative et doit être prise en considération pour une description correcte de la réponse de l’aquifère.

Resumen

Se analiza el efecto de la heterogeneidad de la conductividad hidráulica en las fluctuaciones inducidas por mareas en un acuífero costero confinado teórico. El modelo conceptual supone que la conductividad hidráulica aumenta linealmente con la distancia a la costa. Este tipo de heterogeneidad ha sido observada en numerosos acuíferos costeros aluviales. Se deriva una solución analítica exacta que predice las fluctuaciones inducidas en términos de la función de Hankel. La solución exacta puede aproximarse mediante una simple expresión matemática que es válida para pequeños incrementos de la conductividad hidráulica. Las soluciones exacta y aproximada muestran diferencias significativas con la solución clásica derivada para un acuífero homogéneo. La amplitud de la fluctuación inducida está atenuada cerca de la línea de costa pero aumenta a medida que la distancia a la costa se incrementa. El defasaje en tiempo entre la marea oceánica y la fluctuación inducida en el acuífero no es lineal, sino que se comporta como una función de tipo raíz cuadrada que produce una transmisión más rápida de la onda de marea. Ejemplos hipotéticos muestran que el efecto de la heterogeneidad en la conductividad hidráulica puede ser importante y debería considerarse para una correcta descripción de la respuesta de las aguas subterráneas.

摘要

本文介绍一个理论海岸承压含水层中渗透系数非均质性对潮汐诱发的水头波动的影响。概念模型假定渗透系数随着距海岸线的距离线性增加。这种非均质的类型在许多冲积海岸含水层中都已观察到。获得的以汉克尔函数形式的精确解析解可用于预测诱发水头波动。这个精确解析解可由一个简单的数学表达式近似,允许渗透系数的小量增加。精确解和近似解都显示了与通过均质含水层获得的传统解的显著差异。靠近海岸带,诱发水头波动的幅度衰减,但是随着据海岸带距离的增加而增强。海水潮汐与含水层中诱发的水头波动之间的延时不是线性的;类似于方根类型的函数,导致对潮汐波动更快的传导。假设例子显示渗透系数非均质性的影响是显著的,应该在对地下水响应的正确描述上加以考虑。

Resumo

A influência da heterogeneidade da condutividade hidráulica nas flutuações do nível piezométrico induzida pelas marés é apresentada para um aquífero costeiro confinado teórico. O modelo concetual assume que a condutividade hidráulica aumenta linearmente com a distância ao litoral. Este tipo de heterogeneidades tem sido observado em muitos aquíferos costeiros aluviais. Uma solução analítica exata que prevê flutuações induzidas do nível piezométrico é obtida em termos de uma função de Hankel. A solução exata pode ser aproximada através de uma expressão matemática simples, válida para pequenas taxas de aumento da condutividade hidráulica. Tanto a solução exata como a aproximada apresentaram diferenças significativas em relação à solução clássica obtida para um aquífero homogéneo. Perto da linha de costa, a amplitude de flutuação do nível piezométrico é amortecida, mas é reforçada com o aumento da distância à costa. O lapso de tempo entre a maré e a flutuação de nível induzida no aquífero não é linear; comportando-se como uma função do tipo raiz quadrada e levando a uma transmissão mais rápida das flutuações das marés. Exemplos hipotéticos mostram que a influência da heterogeneidade da condutividade hidráulica pode ser significativa e que deve ser considerada para uma descrição correta da resposta das águas subterrâneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1965) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover, New York

    Google Scholar 

  • Arfken GB, Weber HJ (2005) Mathematical methods for physicists, 6th edn. Harcourt, San Diego

    Google Scholar 

  • Bear J (1988) Dynamics of fluids in porous media. Dover, New York

    Google Scholar 

  • Cardenas MB (2010) Lessons from and assessment of Boussinesq aquifer modeling of a large fluvial island in a dam-regulated river. Adv Water Resour 33:1359–1366

    Article  Google Scholar 

  • Carol ES, Kruse EE, Pousa JL, Roig AR (2009) Determination of heterogeneities in the hydraulic properties of a phreatic aquifer from tidal level fluctuations: a case in Argentina. Hydrogeol J 17:1727–1732

    Article  Google Scholar 

  • Carr PA, van der Kamp G (1969) Determining aquifer characteristics by the tidal methods. Water Resour Res 5:1023–1031

    Article  Google Scholar 

  • Chuang MH, Huang CS, Li GH, Yeh HD (2010) Groundwater fluctuations in heterogeneous coastal leaky aquifer systems. Hydrol Earth Syst Sci 14:1819–1826

    Article  Google Scholar 

  • Drogue C, Razark M, Krivic A (1984) Survey of a coastal karstic aquifer by analysis of the effect of Kras of Slovenia, Yugoslavia. Environ Geol Water Sci 6:103–109

    Article  Google Scholar 

  • Erskine AD (1991) The effect of tidal fluctuation on a coastal aquifer in the UK. Ground Water 29:556–562

    Article  Google Scholar 

  • Ferris JG (1951) Cyclic fluctuations of water level as a basis for determining aquifer transmissibility. Int Assoc Sci Hydrol Pub 33:148–155

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Geng X, Li H, Boufadel MC (2009) Tide-induced head fluctuations in a coastal aquifer: effects of the elastic storage and leakage of the submarine outlet-capping. Hydrogeol J 17:1289–1296

    Article  Google Scholar 

  • Guo QN, Li HL, Boufadel MC, Xia YQ, Li GH (2007) Tide-induced groundwater head fluctuation in coastal multi-layered aquifer systems with a submarine outlet-capping. Adv Water Resour 30:1746–1755

    Article  Google Scholar 

  • Guo H, Jiao JJ, Li H (2010) Groundwater response to tidal fluctuations in a two-zone aquifer. J Hydrol 381:374–371

    Article  Google Scholar 

  • Jacob CE (1950) Flow of groundwater. In: Rouse H (ed) Engineering hydraulics. Wiley, New York, pp 321–386

    Google Scholar 

  • Jeng DS, Li L, Barry DA (2002) Analytical solution for tidal propagation in a coupled semi-confined/phreatic coastal aquifer. Adv Water Resour 25:577–584

    Article  Google Scholar 

  • Jha MK, Kamii Y, Chikamori K (2003) On the estimation of phreatic aquifer parameters by the tidal response technique. Water Resour Manage 17:69–88

    Article  Google Scholar 

  • Jiao JJ, Tang Z (1999) An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer. Water Resour Res 35:747–751

    Article  Google Scholar 

  • Li H, Jiao JJ (2001a) Tide-induced groundwater fluctuation in a coastal leaky confined aquifer system extending under the sea. Water Resour Res 37:1165–1171

    Article  Google Scholar 

  • Li H, Jiao JJ (2001b) Analytical studies of groundwater head fluctuation in a coastal confined aquifer overlain by a semi-permeable layer with storage. Adv Water Resour 24:565–573

    Article  Google Scholar 

  • Li HL, Jiao JJ (2002a) Tidal groundwater level fluctuations in L-shaped leaky coastal aquifer system. J Hydrol 268:34–243

    Article  Google Scholar 

  • Li HL, Jiao JJ (2002b) Analytical solutions of tidal groundwater flow in coastal two-aquifer system. Adv Water Resour 25:417–426

    Article  Google Scholar 

  • Li H, Jiao JJ (2003a) Influence of tide on the mean watertable in an unconfined, anisotropic, inhomogeneous coastal aquifer. Adv Water Resour 26:9–16

    Article  Google Scholar 

  • Li HL, Jiao JJ (2003b) Tide-induced seawater-groundwater circulation in a multi-layered coastal leaky aquifer system. J Hydrol 274:211–224

    Article  Google Scholar 

  • Li HL, Jiao JJ, Luk M, Cheung K (2002) Tide-induced groundwater level fluctuation in coastal aquifers bounded by L-shaped coastlines. Water Resour Res. doi:10.1029/2001WR000556

  • Li HL, Li GY, Cheng JM, Boufadel MC (2007) Tide-induced head fluctuations in a confined aquifer with sediment covering its outlet at the sea floor. Water Resour Res. doi:10.1029/2005WR004724

  • Li G, Li H, Boufadel MC (2008) The enhancing effect of the elastic storage of the seabed aquitard on the tide-induced groundwater head fluctuation in confined submarine aquifer systems. J Hydrol 350:83–92

    Article  Google Scholar 

  • Lunt IA, Siegel DI, Bauer RI (2004) A quantitative, three-dimensional depositional model of gravelly braided rivers. Sedimentol 51:377–414

    Article  Google Scholar 

  • Millham NP, Howes BL (1995) A comparison of methods to determine K in a shallow coastal aquifer. Ground Water 33:49–57

    Article  Google Scholar 

  • Montalto FA, Steenhuis TS, Parlange JY (2006) The hydrology of Piermont Marsh, a reference for tidal marsh restoration in the Hudson River estuary. New York J Hydrol 316:108–128

    Google Scholar 

  • Rotzoll K, El-Kadi AI, Gingerich SB (2008) Analysis of an unconfined aquifer subject to asynchronous dual-tide propagation. Ground Water 46:239–250

    Article  Google Scholar 

  • Serfes ME (1991) Determining the mean hydraulic gradient of ground water affected by tidal fluctuations. Ground Water 29:549–555

    Article  Google Scholar 

  • Song Z, Li L, Kong J, Zhang H (2007) A new analytical solution of tidal water table fluctuations in a coastal unconfined aquifer. J Hydrol 340:256–260

    Article  Google Scholar 

  • Sun PP, Li HL, Boufadel MC, Geng XL, Chen S (2008) An analytical solution and case study of groundwater head response to dual tide in an island leaky confined aquifer. Water Resour Res. doi:10.1029/2008WR006893

  • Townley LR (1995) The response of aquifers to periodic forcing. Adv Water Resour 18:125–146

    Article  Google Scholar 

  • Trefry MG (1999) Periodic forcing in composite aquifers. Adv Water Resour 22:645–656

    Article  Google Scholar 

  • Trefry MG, Bekele E (2004) Structural characterization of an island aquifer via tidal methods. Water Resour Res. doi 10.1029/2003WR002003

  • Trefry MG, Johnston CD (1998) Pumping test analysis for a tidally forced aquifer. Ground Water 36:427–433

    Article  Google Scholar 

  • Xia YQ, Li HL, Boufadel MC, Guo QN, Li GH (2007) Tidal wave propagation in a coastal aquifer: effects of leakage through its submarine outlet and offshore roof. J Hydrol 337:249–257

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Professor Jianming Jin of University of Illinois for the Fortran routines used to compute the Hankel and Bessel functions, and Professor Anvar Kacimov, an anonymous reviewer and the Associated Editor for their constructive comments which improved the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Guarracino.

Electronic Supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 58 kb)

Appendix

Appendix

Let H(x,t) be the solution of the following boundary value problem:

$$ \frac{\partial }{{\partial x}}\left( {{K_0}\left( {1 + bx} \right)\frac{{\partial H}}{{\partial x}}} \right) = {S_s}\frac{{\partial H}}{{\partial t}} $$
(20)
$$ H(0,t) = A{e^{{i\omega t}}} $$
(21)
$$ \mathop{{\lim }}\limits_{{x \to \infty }} K(x)\frac{{\partial H}}{{\partial x}} = 0 $$
(22)

Then, the solution of Eqs. (1)–(4) satisfies:

$$ h(x,t) = {\rm Re} \left[ {H(x,t)} \right] $$
(23)

where Re denotes the real part of the followed complex expression. In order to verify the boundary condition Eq. (21), H(x,t) must be expressed as:

$$ H(x,t) = AX(x){e^{{i\omega t}}} $$
(24)

where X(x) is a complex function.

Substituting Eq. (24) in Eqs. (20)–(22), the following boundary value problem is obtained:

$$ \frac{d}{{dx}}\left( {\left( {1 + bx} \right)\frac{{dX}}{{dx}}} \right) + {b^2}{\Lambda^2}X = 0 $$
(25)
$$ X(0) = 1 $$
(26)
$$ \mathop{{\lim }}\limits_{{x \to \infty }} (1 + bx)\frac{{dX}}{{dx}} = 0 $$
(27)

where:

$$ {\Lambda^2} = - i\frac{{\omega {S_s}}}{{{b^2}{K_0}}} = - i{ }2{\left( {\frac{a}{b}} \right)^2} $$
(28)

In order to find the general solution of Eq. (25), the following change of variables is proposed:

$$ u = 2\Lambda \sqrt {{1 + bx}} $$
(29)

where Λ = a(−1 + i) /b. Replacing Eq. (29) in Eq. (25) gives:

$$ {u^2}\frac{{{d^2}X}}{{d{u^2}}} + u\frac{{dX}}{{du}} + {u^2}X = 0 $$
(30)

The ordinary differential Eq. (30) is the zero order Bessel equation and its general solution can be written as (Abramowitz and Stegun 1965):

$$ X(u) = {C_1}{ }{J_0}(u) + {C_2}{ }{Y_0}(u) $$
(31)

where J 0 and Y 0 are the first and second kind Bessel functions of zero order, and C 1 and C 2 are complex constants.

Using asymptotic expressions for the derivatives of J 0 and Y 0 (Arfken and Weber 2005), it can be shown that the boundary condition Eq. (27) is satisfied when:

$$ \left( {{C_1} + i{C_2}} \right) = 0 $$
(32)

Then:

$$ X(u) = {C_1}{ }\left( {{J_0}(u) + i{ }{Y_0}(u)} \right) = {C_1}H_0^{{(1)}}(u) $$
(33)

where H (1)0 is the Hankel function of zero order and first kind (Abramowitz and Stegun 1965). Now, imposing the boundary condition Eq. (26) to Eq. (33) yields:

$$ {C_1}{ = }{\left( {H_0^{{(1)}}(2\Lambda )} \right)^{{ - 1}}} $$
(34)

Then the solution of the boundary value problem Eqs. (25)–(27) is:

$$ X(x) = \frac{{H_0^{{(1)}}(2\Lambda \sqrt {{1 + bx}} )}}{{H_0^{{(1)}}(2\Lambda )}} $$
(35)

Finally, in virtue of Eqs. (23) and (24):

$$ h(x,t) = {\rm Re} \left[ {A\frac{{H_0^{{(1)}}(2\Lambda \sqrt {{1 + bx}} )}}{{H_0^{{(1)}}(2\Lambda )}}{e^{{i\omega t}}}} \right] $$
(36)

which is the exact analytical solution for the boundary value problem Eqs. (1)–(4).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monachesi, L.B., Guarracino, L. Exact and approximate analytical solutions of groundwater response to tidal fluctuations in a theoretical inhomogeneous coastal confined aquifer. Hydrogeol J 19, 1443–1449 (2011). https://doi.org/10.1007/s10040-011-0761-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0761-y

Keywords

Navigation