Skip to main content
Log in

Onset of structural evolution in granular materials as a redundancy problem

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The present paper is concerned with the redundancy of equations describing the static equilibrium of a granular assembly in relation to emergent behavioural features in granular materials such as critical state, jamming transition, instabilities and yielding. It is proposed to link the concept of jamming to critical state phenomena by introducing a limiting micromechanical state at which large plastic (dissipative) structural evolution can occur, while static equilibrium is still maintained. Such a state, herein coined as a Stable Evolution State (SES), can be numerically determined based on a number of 2D Discrete Element Method (DEM) simulations on loose granular assemblies for a given interparticle friction, but with varying contact stiffnesses, and subjected to various loading paths. By tracing the evolutions of essential micro-variables such as fabric (contact normal) anisotropy, coordination number and rigidity ratio (ratio of mean contact force to contact stiffness and diameter) as well as the onset of plastic dissipation, a well-defined limit surface emerges in the space spanning coordination number, fabric anisotropy and rigidity ratio. Interestingly, the same surface is reached when conducting other DEM simulations on dense granular assemblies with the same interparticle friction along a variety of loading paths and control conditions, thereby verifying the existence of such a characteristic SES surface. This suggests a new reference state in granular materials which facilitates the mathematical formulation of multiscale constitutive laws as it provides an essential link to plastic yielding and critical state in geomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liu, A.J., Nagel, S.R.: Nonlinear dynamics: jamming is not just cool any more. Nature 396(6706), 21–22 (1998)

    Article  ADS  Google Scholar 

  2. Andreotti, B., Forterre, Y., Pouliquen, O.: Granular Media: Between Fluid and Solid. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  3. O’Hern, C.S., Silbert, L.E., Liu, A.J., Nagel, S.R.: Jamming at Zero Temperature and Zero Applied Stress: the Epitome of Disorder. arXiv:cond-mat/0304421v1, (2008)

  4. Potiguar, F.Q., Makse, H.A.: Effective temperature and jamming transition in dense, gently sheared granular assemblies. Eur. Phys. J. E 19(2), 171–183 (2006)

    Article  Google Scholar 

  5. Roux, J.-N.: Geometric origin of mechanical properties of granular materials. Phys. Rev. E 61, 6802 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. Moukarzel, C.: Isostatic phase transition and instability in stiff granular materials. Phys. Rev. Lett. 81(8), 1634–1637 (1998)

    Article  ADS  Google Scholar 

  7. Agnolin, I., Roux, J.-N.: Internal states of model isotropic granular packings. I. Assembling process, geometry, and contact networks. Phys. Rev. E 76(6), 061302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. Somfai, E., van Hecke, M., Ellenbroek, W.G., Shundyak, K., van Saarloos, W.: Critical and noncritical jamming of frictional grains. Phys. Rev. E 75(2), 020301 (2007)

    Article  ADS  Google Scholar 

  9. Kasahara, A., Nakanishi, H.: Isostaticity and mechanical response of two-dimensional granular piles. Phys. Rev. E 70(5), 051309 (2004)

    Article  ADS  Google Scholar 

  10. Radjai, F., Brendel, L., Roux, S.: Nonsmoothness, indeterminacy, and friction in two-dimensional arrays of rigid particles. Phys. Rev. E 54(1), 861–873 (1996)

    Article  ADS  Google Scholar 

  11. Wang, P., Song, C., Briscoe, C., Wang, K., Makse, A.: From force distribution to average coordination number in frictional granular matter. Phys. A: Stat. Mech. Appl. 389(19), 3972–3977 (2010)

    Article  Google Scholar 

  12. Silbert, L.E., Grest, G.S., Landry, J.W.: Statistics of the contact network in frictional and frictionless granular packings. Phys. Rev. E 66(6), 61303 (2002)

    Article  ADS  Google Scholar 

  13. Unger, T., Kertész, J., Wolf, D.: Force indeterminacy in the jammed state of hard disks. Phys. Rev. Lett. 94(17), 178001 (2005)

    Article  ADS  Google Scholar 

  14. Snoeijer, J., Vlugt, T., van Hecke, M., van Saarloos, W.: Force network ensemble: a new approach to static granular matter. Phys. Rev. Lett. 92(5), 054302 (2004)

    Article  ADS  Google Scholar 

  15. Shundyak, K., van Hecke, M., van Saarloos, W.: Force mobilization and generalized isostaticity in jammed packings of frictional grains. Phys. Rev. E 75, 010301 (2007)

    Article  ADS  Google Scholar 

  16. Tordesillas, A., Lam, E., Metzger, P.T., Nakagawa, M., Luding, S.: Hyperstaticity and loops in frictional granular packings. In: Nakagawa, M., Luding, S. (eds.) Proceedings of the 6th International Conference on Micromechanics of Granular Media, pp. 325–328. American Institute of Physics (2009)

  17. Sun, J., Sundaresan, S.: A constitutive model with microstructure evolution for flow of rate-independent granular materials. J. Fluid Mech. 682, 590–616 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tordesillas, A., Lin, Q., Zhang, J., Behringer, R.P., Shi, J.: Structural stability and jamming of self-organized cluster conformations in dense granular materials. J. Mech. Phys. Solids 59(2), 265–296 (2011)

    Article  ADS  MATH  Google Scholar 

  19. Métayer, J.-F., Suntrup III, D.J., Radin, C., Swinney, H.L., Schröter, M.: Shearing of frictional sphere packings. Europhys. Lett. (EPL) 93, 64003 (2011)

    Article  ADS  Google Scholar 

  20. Huang, X., Hanley, K.J., O’Sullivan, C., Kwok, C.Y.: Exploring the influence of interparticle friction on critical state behaviour using dem. Int. J. Numer. Anal. Methods Geomech. 38(12), 1276–1297 (2014)

    Article  Google Scholar 

  21. Göncü, F., Durán, O., Luding, S.: Constitutive relations for the isotropic deformation of frictionless packings of polydisperse spheres. C. R. Mécanique 338(10), 570–586 (2010)

    Article  MATH  Google Scholar 

  22. van Hecke, M.: Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys.: Condens. Matter 22, 033101 (2010)

    ADS  Google Scholar 

  23. Wan, R., Pouragha, M.: Fabric and connectivity as field descriptors for deformations in granular media. Contin. Mech. Thermodyn. 27(1–2), 243–259 (2014)

    ADS  Google Scholar 

  24. Kruyt, N.P.: Micromechanical study of plasticity of granular materials. C. R. Mecanique 338, 596–603 (2010)

    Article  ADS  MATH  Google Scholar 

  25. Welker, P., McNamara, S.: What triggers failure in frictional granular assemblies? Phys. Rev. E 79(6), 061305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. Roux, J.N., Combe, G.: Quasi-static rheology and the origin of strain. C. R. Phys. 3(section 2), 131–140 (2002)

    Article  ADS  Google Scholar 

  27. McNamara, S., Herrmann, H.: Measurement of indeterminacy in packings of perfectly rigid disks. Phys. Rev. E 70(6), 061303 (2004)

  28. Nicot, F., Darve, F., Dat Vu Khoa, H.: Bifurcation and second-order work in geomaterials. Int J. Numer. Anal. Methods Geomech. 31(8), 1007–1032 (2007)

    Article  MATH  Google Scholar 

  29. Schreck, C.F., O’Hern, C.S., Silbert, L.E.: Tuning jammed frictionless disk packings from isostatic to hyperstatic. Phys. Rev. E 84, 11305 (2011)

  30. Alexander, S.: Amorphous solids: their structure, lattice dynamics and elasticity. Phys. Rep. 296(2–4), 65–236 (1998)

    Article  ADS  Google Scholar 

  31. Nguyen, D.-H., Azéma, E., Sornay, P., Radjai, F.: Effects of shape and size polydispersity on strength properties of granular materials. Phys. Rev. E 91(3), 032203 (2015)

    Article  ADS  Google Scholar 

  32. Pouragha, M., Wan, R.: Strain in granular media: probabilistic approach to dirichlet tessellation. J. Eng. Mech. C4016002 (2016). doi:10.1061/(ASCE)EM.1943-7889.0001045

  33. Kruyt, N.P.: Micromechanical study of fabric evolution in quasi-static deformation of granular materials. Mech. Mater. 44, 120–129 (2012)

    Article  Google Scholar 

  34. Schofield, Andrew, Wroth, Peter: Critical State Soil Mechanics. McGraw-Hill, London (1968)

    Google Scholar 

  35. Wood, David Muir: Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  36. Kolymbas, D.: Introduction to Hypoplasticity. A. A. Balkema, Rotterdam (2000)

    Google Scholar 

  37. Radjai, F., Delenne, J.-Y., Azéma, E., Roux, S.: Fabric evolution and accessible geometrical states in granular materials. Granul. Matter 14(2), 259–264 (2012)

    Article  Google Scholar 

  38. Jenkins, J.T., Strack, O.D.L.: Mean-field inelastic behavior of random arrays of identical spheres. Mech. Mater. 16(1), 25–33 (1993)

    Article  Google Scholar 

  39. Kruyt, N.P., Antony, S.J.: Force, relative-displacement, and work networks in granular materials subjected to quasistatic deformation. Phys. Rev. E 75(5), 051308 (2007)

    Article  ADS  Google Scholar 

  40. Guo, N., Zhao, J.: The signature of shear-induced anisotropy in granular media. Comput. Geotech. 47, 1–15 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  41. Agnolin, I., Roux, J.-N.: Internal states of model isotropic granular packings. III. Elastic properties. Phys. Rev. E 76(6), 061304 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39(4), 601–614 (1989)

    Article  Google Scholar 

  43. Kruyt, N.P.: Contact forces in anisotropic frictional granular materials. Int. J. Solids Struct. 40(13), 3537–3556 (2003)

    Article  MATH  Google Scholar 

  44. Azéma, E., Radjai, F., Saussine, G.: Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech. Mater. 41(6), 729–741 (2009)

    Article  Google Scholar 

  45. Cambou, B., Dubujet, P., Emeriault, F., Sidoroff, F.: Homogenization for granular materials. Eur. J. Mech. A Solids 14(2), 255–276 (1995)

    MathSciNet  MATH  Google Scholar 

  46. Cambou, B., Dubujet, P., Nouguier-Lehon, C.: Anisotropy in granular materials at different scales. Mech. Mater. 36(12), 1185–1194 (2004)

    Article  Google Scholar 

  47. Dafalias, Y.F., Li, X.S.: Revisiting the paradigm of critical state soil mechanics: fabric effects. In: Yang, Q., Zhang, J.-M., Zheng, H., Yao, Y. (eds.) Constitutive Modelling of Geomaterials: Advances and New Applications, pp. 13–26. Springer, Berlin (2013)

  48. Zhao, J., Guo, N.: Unique critical state characteristics in granular media considering fabric anisotropy. Géotechnique 63(8), 695–704 (2013)

    Article  MathSciNet  Google Scholar 

  49. Wan, R.G., Guo, P.: Stress dilatancy and fabric dependencies on sand behavior. J. Eng. Mech. 130(6), 635–645 (2004)

    Article  Google Scholar 

  50. Langton, C.G.: Computation at the edge of chaos: phase transitions and emergent computation. Phys. D: Nonlinear Phenom. 42(1–3), 12–37 (1990)

  51. Kauffman, S.A.: Origins of Order: Self-organization and Selection in Evolution. Oxford University Press, New York (1993)

    Google Scholar 

  52. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59, 381 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  53. McKelvey, B.: Self-organization, complexity catastrophe, and microstate models at the edge of chaos. In: Baum, J.A.C., McKelvey, B. (eds.) Variations in Organization Science: In Honor of Donald T. Campbell, pp. 279–307. SAGE, Thousand Oaks (1999)

  54. Kruyt, N.P.: Micromechanics of the critical state of granular materials. In: Yang, Q., Zhang, J.-M., Zheng, H., Yao, Y. (eds.) Constitutive Modelling of Geomaterials: Advances and New Applications, pp. 193–198. Springer, Berlin (2013)

  55. Voivret, C., Radjai, F., Delenne, J.-Y., El Youssoufi, M.S.: Multiscale force networks in highly polydisperse granular media. Phys. Rev. Lett. 102(17), 178001 (2009)

    Article  ADS  MATH  Google Scholar 

  56. Kuhn, M.R.: Dense granular flow at the critical state: maximum entropy and topological disorder. Granul. Matter 16(4), 499–508 (2014)

    Article  Google Scholar 

  57. Kuhn, M.R.: Maximum disorder model for dense steady-state flow of granular materials. Mech. Mater. 93, 63–80 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science and Engineering Research Council of Canada and Foundation Computer Modelling Group within the framework of a Government-Industry Partnership (NSERC-CRD) Grant toward the fundamental understanding of complex multiphasic granular media.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouragha, M., Wan, R. Onset of structural evolution in granular materials as a redundancy problem. Granular Matter 18, 38 (2016). https://doi.org/10.1007/s10035-016-0640-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0640-2

Keywords

Navigation