Skip to main content

Advertisement

Log in

Vitamin E exhibits bone anabolic actions in normal male rats

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Recently, vitamin E has been found to promote the bone structure of nicotine-treated rats well above their baseline values, thus suggesting that vitamin E may have some anabolic action. A bone anabolic agent acts by improving the bone structure leading to stronger bone. To assess the possible anabolic action vitamin E on bone, we supplemented α-tocopherol (ATF) or γ-tocotrienol (GTT) at 60 mg/kg or vehicle [normal control (NC) group] for 4 months to normal male rats and measured their bone structure and biomechanical properties. Histomorphometric analysis revealed that vitamin E-supplemented rats have better trabecular volume, thickness, number, and separation than rats receiving vehicle only. For the first time we reported that GTT improves all the parameters of bone biomechanical strength, while ATF only improved some of the parameters compared to the NC group. Vitamin E supplementation, especially with the gamma isomer, improves bone structure, which contributed to stronger bone. Therefore, vitamin E has the potential to be used as an anabolic agent to treat osteoporosis or as bone supplements for young adults to prevent osteoporosis in later years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905–916

    Article  CAS  PubMed  Google Scholar 

  2. Buehler J, Chappuis P, Saffar JL, Foos E, Vignery A (2001) Strontium ranelate inhibits bone resorption whilst maintaining bone formation in alveolar bone in monkeys. Bone 29:176–179

    Article  CAS  PubMed  Google Scholar 

  3. Delannoy P, Bazot D, Marie PJ (2002) Long-term treatment with strontium ranelate increases vertebral bone mass without deleterious effect in mice. Metabolism 51:906–911

    Article  CAS  PubMed  Google Scholar 

  4. Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19:2012–2020

    Article  CAS  PubMed  Google Scholar 

  5. Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20:177–184

    Article  CAS  PubMed  Google Scholar 

  6. Hermizi H, Faizah O, Ima-Nirwana S, Ahmad Nazrun S, Norazlina M (2009) Beneficial effects of tocotrienol and tocopherol on bone histomorphometric parameters in Sprague–Dawley male rats after nicotine cessation. Calcif Tissue Int 84:65–74

    Article  CAS  PubMed  Google Scholar 

  7. Azzi A, Strocker A (2000) Vitamin E: non-antioxidant roles. Prog Lipid Res 39:231–255

    Article  CAS  PubMed  Google Scholar 

  8. Qureshi AA, Sami SA, Salser WA, Khan FA (2002) Dose-dependent suppression of serum cholesterol by tocotrienol-rich fraction (TRF25) of rice bran in hypercholesterolemic humans. Atherosclerosis 161:199–207

    Article  CAS  PubMed  Google Scholar 

  9. Mahadevappa VG, Sicilia F, Holub BJ (1991) Effect of tocotrienol derivatives on collagen and ADP-induced human platelet aggregation. In: Proceedings 1989 international palm oil conference on nutrition and health aspects of palm oil (PORIM), Kuala Lumpur, Malaysia, pp 36–38

  10. Ngah WZ, Jarien Z, San MM, Marzuki A, Top GM, Shamaan NA, Kadir KA (1991) Effect of tocotrienols on hepatocarcinogenesis induced by 2-acetylaminofluorene in rats. Am J Clin Nutr 53:1076–1081

    Google Scholar 

  11. Nesaretnam K, Stephen R, Dils R, Darbre P (1998) Tocotrienols inhibit the growth of human breast cancer cells irrespective of estrogen receptor status. Lipids 33:461–469

    Article  CAS  PubMed  Google Scholar 

  12. Melhus H, Michalsson K, Holmberg L, Wolk A, Ljunghall S (1999) Smoking, antioxidant vitamins, and the risk of hip fracture. J Bone Miner Res 14:129–135

    Article  CAS  PubMed  Google Scholar 

  13. Xu H, Watkins BA, Seifert MF (1995) Vitamin E stimulates trabecular bone formation and alters epiphyseal cartilage morphometry. Calcif Tissue Int 57:293–300

    Article  CAS  PubMed  Google Scholar 

  14. Ima-Nirwana S, Kiftiah A, Sariza T, Gapor MT, Khalid BAK (1999) Palm vitamin E improves bone metabolism and survival rate in thyrotoxic rats. Gen Pharmacol 32:621–626

    Article  CAS  PubMed  Google Scholar 

  15. Ima-Nirwana S, Norazlina M, Khalid BAK (2000) Palm vitamin E prevents osteoporosis in orchidectomized growing male rats. Nat Prod Sci 694:155–160

    Google Scholar 

  16. Norazlina M, Ima-Nirwana S, Gapor MT, Khalid BAK (2000) Palm vitamin E is comparable to alpha-tocopherol in maintaining bone mineral density in ovariectomised female rats. Exp Clin Endocrinol Diabetes 108:305–310

    Article  CAS  PubMed  Google Scholar 

  17. Ima-Nirwana S, Fakhrurazi H (2002) Palm vitamin E protects bone against dexamethasone-induced osteoporosis in male rats. Med J Malaysia 57:136–144

    Google Scholar 

  18. Ahmad NS, Khalid BAK, Luke DA, Ima-Nirwana S (2005) Tocotrienol offers better protection than tocopherol from free radical-induced damage of rat bone. Clin Exp Pharmacol Physiol 32:761–770

    Article  CAS  PubMed  Google Scholar 

  19. Czerny B, Pawlik A, Juzyszyn Z, Myśliwiec Z (2004) The effect of tamoxifen and fluoride on bone mineral density, biomechanical properties and blood lipids in ovariectomized rats. Basic Clin Pharmacol Toxicol 92:162–165

    Google Scholar 

  20. Turner CH, Hinckley WR, Wilson ME, Zhang W, Dunipace AJ (2001) Combined effects of diets with reduced calcium and phosphate and increased fluoride intake on vertebral bone strength and histology in rats. Calcif Tissue Int 69:51–57

    Article  CAS  PubMed  Google Scholar 

  21. Bohatyrewicz A (1999) Effects of fluoride on mechanical properties of femoral bone in growing rats. Fluoride 32:47–54

    CAS  Google Scholar 

  22. Chacha D, Turner CH, Dunipace AJ, Grynpas MD (1999) The effect of fluoride treatment on bone mineral in rabbits. Calcif Tissue Int 64:345–351

    Article  Google Scholar 

  23. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols and units. Report of the ASMBR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  24. Difford J (1974) A simplified method for the preparation of methyl methacrylate embedding medium. Med Lab Technol 31:79–81

    CAS  PubMed  Google Scholar 

  25. Von Kossa J (1974) Nachweis von Kalk. Beitrage zur pathologischen Anatomie und zur allgemeinen. Pathologie 29:163

    Google Scholar 

  26. Baldock PA, Morris HA, Need AG, Moore RJ, Durbridge TC (1998) Variation in the short-term changes in bone cell activity in three regions of the distal femur immediately following ovariectomy. J Bone Miner Res 13:1451–1457

    Article  CAS  PubMed  Google Scholar 

  27. Haffa A, Krueger D, Bruner J, Engelke J, Gundberg C, Akhter M, Binkley N (2000) Diet- or warfarin-induced vitamin K insufficiency elevates circulating undercarboxylated osteocalcin without altering skeletal status in growing female rats. J Bone Miner Res 15:872–878

    Article  CAS  PubMed  Google Scholar 

  28. Fort FL (1991) Drug safety evaluation. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology, vol 4. Marcel Dekker, New York, pp 416–421

    Google Scholar 

  29. Rico H, Revilla M, Villa LF, Alvarez de Buergo M, Ruiz-Contreras D (1994) Determinants of total and regional bone mineral content and density in postpubertal normal women. Metabolism 43:263–266

    Article  CAS  PubMed  Google Scholar 

  30. Rico H, Amo C, Revilla M, Arribas I, González-Riola J et al (1994) Etidronate versus clodronate in the prevention of postovariectomy bone loss. An experimental study in rats. Clin Exp Rheumatol 12:301–304

    CAS  PubMed  Google Scholar 

  31. Umegaki K, Itoh T, Ichikawa T (1994) Effect of vitamin E on chromosomal damage in bone marrow cells of mice having received low dose of X-ray irradiation. Int J Vitam Nutr Res 64:249–252

    CAS  PubMed  Google Scholar 

  32. Meydani SN, Meydani M, Rall LC, Morrow F, Blumberg JB (1994) Assessment of the safety of high-dose, short-term supplementation with vitamin E in healthy older adults. Am J Clin Nutr 60:704–709

    CAS  PubMed  Google Scholar 

  33. Nakamura H, Furukawa F, Nishikawa A, Miyauchi M, Son H-Y, Imazawa T, Hirose M (2001) Oral toxicity of a tocotrienol preparation in rats. Food Chem Toxicol 39:799–805

    Article  CAS  PubMed  Google Scholar 

  34. Oo SL, Chang P, Chan KE (1992) Toxicological and pharmacological studies on palm vitee. Nutr Res 2:217–222

    Google Scholar 

  35. Vignery A, Baron R (1980) Dynamic histomorphometry of alveolar bone remodeling in the adult rat. Anat Rec 196:191–200

    Article  CAS  PubMed  Google Scholar 

  36. Barengolts EL, Curry DJ, Bapna MS, Kukreja SC (1993) Effects of two non-endurance exercise protocols on established bone loss in ovariectomized adult rats. Calcif Tissue Int 52:239–243

    Article  CAS  PubMed  Google Scholar 

  37. Currey JD (1988) The effect of porosity and ash content on the Young’s modulus of elasticity of compact bone. J Biomech 21:131–139

    Article  CAS  PubMed  Google Scholar 

  38. Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21:13–16

    Article  CAS  PubMed  Google Scholar 

  39. Arjmandi BH, Juma S, Beharka A, Bapna S, Akhter M, Meydani SN (2002) Vitamin E improves bone quality in the aged but not in young adult male mice. J Nutr Biochem 13:543–549

    Article  CAS  PubMed  Google Scholar 

  40. Turan B, Balcik C, Akkas N (1997) Effect of dietary selenium and vitamin E on the biomechanical properties of rabbit bones. Clin Rheumatol 16:441–449

    Article  CAS  PubMed  Google Scholar 

  41. Erikson EH (1950) Childhood and society. Norton, New York

    Google Scholar 

  42. Wang L, Banu J, McMahan CA, Kalu DN (2001) Male rodent model of age-related bone loss in men. Bone 29:141–148

    Article  CAS  PubMed  Google Scholar 

  43. Sandra M, Norazlina M, Nazrun AS, Ima Nirwana S (2008) Palm tocotrienol exerted better antioxidant activities in bone than alpha-tocopherol. Basic Clin Pharmacol Toxicol 103:55–60

    Article  CAS  Google Scholar 

  44. Ebina Y, Okada S, Hamazaki S, Toda Y, Midorikawa O (1991) Impairment of bone formation with aluminium and ferric nitrilotriacetate complexes. Calcif Tissue Int 48:28–36

    Article  CAS  PubMed  Google Scholar 

  45. Abhaya A, Khatri K, Pradhan S, Prakash R (2003) Effect of alpha tocopherol on the growth plate of albino rats. J Anat Soc India 52:58–63

    Google Scholar 

  46. Meydani SN, Barklund MP, Liu S, Meydani M, Miller RA, Cannon JG, Morrow FD, Rocklin R, Blumberg JB (1990) Vitamin E supplementation enhances cell-mediated immunity in healthy elderly subjects. Am J Clin Nutr 52:557–563

    CAS  PubMed  Google Scholar 

  47. Khanduja KL, Avti PK, Kumar S, Pathania V, Pathak CM (2005) Inhibitory effect of vitamin E on proinflammatory cytokines-and endotoxin-induced nitric oxide release in alveolar macrophages. Life Sci 76:2669–2680

    Article  CAS  PubMed  Google Scholar 

  48. Pathania V, Syal N, Pathak CM, Khanduja KL (1999) Vitamin E suppresses the induction of reactive oxygen species release by lipopolysaccharide, interleukin-1β and tumor necrosis factor-α in rat alveolar macrophages. J Nutr Sci Vitaminol 45:675–686

    CAS  PubMed  Google Scholar 

  49. Devaraj S, Jialal I (2005) α-Tocopherol decreases tumor necrosis factor-α mRNA and protein from activated human monocytes by inhibition of 5-lipoxygenase. Free Radic Biol Med 38:1212–1220

    Article  CAS  PubMed  Google Scholar 

  50. Kamat JP, Devasagayam TPA (1995) Tocotrienols from palm oil as a potent inhibitor of lipid peroxidation and protein oxidation in rat brain mitochondria. Neurosci Lett 195:179–182

    Article  CAS  PubMed  Google Scholar 

  51. Serbinova E, Kagan V, Han D, Packer L (1991) Free radical recycling and intramembrane mobility in the antioxidant properties of tocopherol and tocotrienol. Free Radic Biol Med 10:263–275

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ima Nirwana Soelaiman.

About this article

Cite this article

Shuid, A.N., Mehat, Z., Mohamed, N. et al. Vitamin E exhibits bone anabolic actions in normal male rats. J Bone Miner Metab 28, 149–156 (2010). https://doi.org/10.1007/s00774-009-0122-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-009-0122-2

Keywords

Navigation