Skip to main content

Advertisement

Log in

Isolation and characterization of autoantibodies against human cystatin C

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Hereditary cystatin C amyloid angiopathy (HCCAA) is a severe neurodegenerative disorder related to the point mutation in cystatin C gene resulting in human cystatin C (hCC) L68Q variant. One of the potential immunotherapeutic approaches to HCCAA treatment is based on naturally occurring antibodies against cystatin C. A recent growing interest in autoantibodies, especially in the context of neurodegenerative diseases, emerges from their potential use as valuable diagnostic markers and for controlling protein aggregation. In this work, we present characteristics of natural anti-hCC antibodies isolated from the IgG fraction of human serum by affinity chromatography. The electrophoresis (1-D and 2-D) results demonstrated that the isolated NAbs are a polyclonal mixture, but their electrophoretic properties did not allow to classify the new autoantibodies to any particular type of IgG. The Fc-glycan status of the studied autoantibodies was assessed using mass spectrometry analysis. For the isolated NAbs, the epitopic fragments in hCC sequence were identified by MS-assisted proteolytic excision of the immune complex and compared with the ones predicted theoretically. The knowledge of hCC fragments binding to NAbs and other ligands may contribute to the search for new diagnostic methods for amyloidosis of different types and the search for their treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aghera N, Udgaonkar JB (2011) Heterologous expression, purification and characterization of heterodimeric monellin. Protein Expr Purif 76:248–253. doi:10.1016/j.pep.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  • Barnidge DR, Dasari S, Botz CM et al (2014) Using mass spectrometry to monitor monoclonal immunoglobulins in patients with a monoclonal gammopathy. J Proteome Res 13:1419–1427. doi:10.1021/pr400985k

    Article  CAS  PubMed  Google Scholar 

  • Bennett MJ, Sawaya MR, Eisenberg D (2006) Deposition diseases and 3D domain swapping. Structure 14:811–824. doi:10.1016/j.str.2006.03.011

    Article  CAS  PubMed  Google Scholar 

  • Crisostomo AC, Dang L, Digambaranath JL, Klaver AC, Loeffler DA, Payne JJ, Smith LM, Yokom AL, Finke JM (2015) Kinetic analysis of IgG antibodies to beta-amyloid oligom ers with surface plasmon resonance. Anal Biochem 481:43–54. doi:10.1016/j.ab.2015.03.032

    Article  CAS  PubMed  Google Scholar 

  • Dodel R, Balakrishnan K, Keyvani K et al (2011) Naturally occurring autoantibodies against beta-amyloid: investigating their role in transgenic animal and in vitro models of Alzheimer’s disease. J Neurosci 31:5847–5854. doi:10.1523/JNEUROSCI.4401-10.2011

    Article  CAS  PubMed  Google Scholar 

  • Ferraro S, Marano G, Biganzoli EM et al (2011) Prognostic value of cystatin C in acute coronary syndromes: enhancer of atherosclerosis and promising therapeutic target. Clin Chem Lab Med 49:1397–1404. doi:10.1515/CCLM.2011.607

    Article  CAS  PubMed  Google Scholar 

  • Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214

    Article  CAS  PubMed  Google Scholar 

  • Grubb AO (2000) Cystatin C–properties and use as diagnostic marker. Adv Clin Chem 35:63–99

    Article  CAS  PubMed  Google Scholar 

  • Grubb A, Jensson O, Gudmundsson G et al (1984) Abnormal metabolism of gamma-trace alkaline microprotein. The basic defect in hereditary cerebral hemorrhage with amyloidosis. N Engl J Med 311:1547–1549. doi:10.1056/NEJM198412133112406

    Article  CAS  PubMed  Google Scholar 

  • Hochleitner EO, Gorny MK, Zolla-Pazner S, Tomer KB (2000) Mass spectrometric characterization of a discontinuous epitope of the HIV envelope protein HIV-gp120 recognized by the human monoclonal antibody 1331A. J Immunol 164:4156–4161

    Article  CAS  PubMed  Google Scholar 

  • Janowski R, Kozak M, Jankowska E et al (2001) Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat Struct Biol 8:316–320. doi:10.1038/86188

    Article  CAS  PubMed  Google Scholar 

  • Janowski R, Kozak M, Abrahamson M et al (2005) 3D domain-swapped human cystatin C with amyloidlike intermolecular beta-sheets. Proteins 61:570–578. doi:10.1002/prot.20633

    Article  CAS  PubMed  Google Scholar 

  • Jemmerson R, Paterson Y (1986) Mapping epitopes on a protein antigen by the proteolysis of antigen-antibody complexes. Science 232(4753):1001–1004

    Article  CAS  Google Scholar 

  • Jeyarajah S, Parker CE, Summer MT, Tomer KB (1998) Matrix-assisted laser desorption ionization/mass spectrometry mapping of human immunodeficiency virus-gp120 epitopes recognized by a limited polyclonal antibody. J Am Soc Mass Spectrom 9:157–165

    Article  CAS  PubMed  Google Scholar 

  • Johnstone A, Thorpe R (1996) Immunochemistry in practice, 3rd edn. Blackwell Science, Cambridge (ISBN-13: 978-0865426337, ISBN-10: 0865426333)

    Google Scholar 

  • Juszczyk P, Szymanska A, Rodziewicz-Motowidlo S et al (2008) Human cystatin C interactions with amyloidogenic molecules. J Pept Sci 14:29

    Google Scholar 

  • Juszczyk P, Paraschiv G, Szymanska A et al (2009) Binding epitopes and interaction structure of the neuroprotective protease inhibitor cystatin C with beta-amyloid revealed by proteolytic excision mass spectrometry and molecular docking simulation. J Med Chem 52:2420–2428. doi:10.1021/jm801115e

    Article  CAS  PubMed  Google Scholar 

  • Kellner A, Matschke J, Bernreuther C et al (2009) Autoantibodies against beta-amyloid are common in Alzheimer’s disease and help control plaque burden. Ann Neurol 65:24–31. doi:10.1002/ana.21475

    Article  PubMed  Google Scholar 

  • Kim Y, Ponomarenko J, Zhu Z et al (2012) Immune epitope database analysis resource. Nucleic Acids Res 40:W525–W530. doi:10.1093/nar/gks438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276:172–174

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2. doi:10.1186/1745-7580-2-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Lassus J, Harjola VP (2012) Cystatin C: a step forward in assessing kidney function and cardiovascular risk. Hear Fail Rev 17:251–261. doi:10.1007/s10741-011-9242-6

    Article  CAS  Google Scholar 

  • Leslie D, Lipsky P, Notkins AL (2001) Autoantibodies as predictors of disease. J Clin Invest 108:1417–1422. doi:10.1172/JCI14452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lleo A (2014) Chapter 2—What is an autoantibody? In: Gershwin YSLME (ed) Autoantibodies, 3rd edn. Elsevier, San Diego, pp 13–20

    Chapter  Google Scholar 

  • Lleo A, Invernizzi P, Gao B et al (2010) Definition of human autoimmunity—autoantibodies versus autoimmune disease. Autoimmun Rev 9:A259–A266. doi:10.1016/j.autrev.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  • Lundström SL, Fernandes-Cerqueira C, Ytterberg AJ et al (2014a) IgG antibodies to cyclic citrullinated peptides exhibit profiles specific in terms of IgG subclasses, Fc-glycans and a fab-Peptide sequence. PLoS One 9:e113924. doi:10.1371/journal.pone.0113924

    Article  PubMed  PubMed Central  Google Scholar 

  • Lundström SL, Yang H, Lyutvinskiy Y et al (2014b) Blood plasma IgG Fc glycans are significantly altered in Alzheimer’s disease and progressive mild cognitive impairment. J Alzheimers Dis 38:567–579. doi:10.3233/JAD-131088

    PubMed  Google Scholar 

  • Lyutvinskiy Y, Yang HQ, Rutishauser D, Zubarev RA (2013) In silico instrumental response correction improves precision of label-free proteomics and accuracy of proteomics-based predictive models. Mole Cell Proteom 12(8):2324–2331. doi:10.1074/mcp.O112.023804

    Article  CAS  Google Scholar 

  • McLaurin J, Cecal R, Kierstead ME et al (2002) Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nat Med 8:1263–1269. doi:10.1038/nm790

    Article  CAS  PubMed  Google Scholar 

  • Mussap M, Plebani M (2004) Biochemistry and clinical role of human cystatin C. Crit Rev Clin Lab Sci 41:467–550. doi:10.1080/10408360490504934

    Article  CAS  PubMed  Google Scholar 

  • Nagele RG, DeMarshall C, Acharya NK et al (2014) Utility of Autoantibody Biomarkers for Detection of Alzheimer’s Disease. Alzheimer’s Dement 10:P300. doi:10.1016/j.jalz.2014.04.502

    Article  Google Scholar 

  • Nagele RG, DeMarshall C, Acharya NK et al (2015) Utility of autoantibody biomarkers for detection of Alzheimer’s Disease. Alzheimer’s Dement J Alzheimer’s Assoc 10:P300. doi:10.1016/j.jalz.2014.04.502

    Article  Google Scholar 

  • Neff F, Wei X, Nölker C et al (2008) Immunotherapy and naturally occurring autoantibodies in neurodegenerative disorders. Autoimmun Rev 7:501–507. doi:10.1016/j.autrev.2008.04.010

    Article  CAS  PubMed  Google Scholar 

  • Nilsson M, Wang X, Rodziewicz-Motowidlo S et al (2004) Prevention of domain swapping inhibits dimerization and amyloid fibril formation of cystatin C: use of engineered disulfide bridges, antibodies, and carboxymethylpapain to stabilize the monomeric form of cystatin C. J Biol Chem 279:24236–24245. doi:10.1074/jbc.M402621200

    Article  CAS  PubMed  Google Scholar 

  • Olafsson I, Grubb A (2000) Hereditary cystatin C amyloid angiopathy. Amyloid 7:70–79

    Article  CAS  PubMed  Google Scholar 

  • Östner G, Lindström V, Postnikov AB et al (2011) High throughput testing of drug library substances and monoclonal antibodies for capacity to reduce formation of cystatin C dimers to identify candidates for treatment of hereditary cystatin C amyloid angiopathy. Scand J Clin Lab Invest 71:676–682. doi:10.3109/00365513.2011.621026

    Article  PubMed  Google Scholar 

  • Palsdottir A, Abrahamson M, Thorsteinsson L et al (1988) Mutation in cystatin C gene causes hereditary brain haemorrhage. Lancet 2:603–604

    Article  CAS  PubMed  Google Scholar 

  • Ponomarenko JV, Van Regenmortel MHV (2009) B-cell epitope prediction. Chapter 35 Structural bioinformatics, Wiley-Blackwell, New Jersey

    Google Scholar 

  • Ponomarenko J, Bui HH, Li W et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform 9:514. doi:10.1186/1471-2105-9-514

    Article  Google Scholar 

  • Sánchez-Mateos P, Sánchez-Madrid F (1991) Structure-function relationship and immunochemical mapping of external and intracellular antigenic sites on the lymphocyte activation inducer molecule, AIM/CD69. Eur J Immunol 21:2317–2325. doi:10.1002/eji.1830211005

    Article  PubMed  Google Scholar 

  • Sladewska A, Szymańska A, Kordalska M et al (2011) Identification of the epitope for anti-cystatin C antibody. J Mol Recognit 24:687–699. doi:10.1002/jmr.1100

    Article  CAS  PubMed  Google Scholar 

  • Solomon B (2008) Immunological approaches for amyloid-beta clearance toward treatment for Alzheimer’s disease. Rejuvenation Res 11:349–357. doi:10.1089/rej.2008.0689

    Article  CAS  PubMed  Google Scholar 

  • Southwell AL, Patterson PH (2010) Antibody therapy in neurodegenerative disease. Rev Neurosci 21:273–287

    Article  CAS  PubMed  Google Scholar 

  • Spodzieja M, Szymańska A, Kołodziejczyk A et al (2012) Interaction of serum amyloid A with human cystatin C–identification of binding sites. J Mol Recognit 25:513–524. doi:10.1002/jmr.2220

    Article  CAS  PubMed  Google Scholar 

  • Spodzieja M, Rafalik M, Szymańska A et al (2013) Interaction of serum amyloid A with human cystatin C–assessment of amino acid residues crucial for hCC-SAA formation (part II). J Mol Recognit 26:415–425. doi:10.1002/jmr.2283

    Article  CAS  PubMed  Google Scholar 

  • Staniforth RA, Giannini S, Higgins LD et al (2001) Three-dimensional domain swapping in the folded and molten-globule states of cystatins, an amyloid-forming structural superfamily. EMBO J 20:4774–4781. doi:10.1093/emboj/20.17.4774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanescu R, Iacob RE, Damoc EN et al (2007) Mass spectrometric approaches for elucidation of antigenantibody recognition structures in molecular immunology. Eur J Mass Spectrom (Chichester, Eng) 13:69–75. doi:10.1255/ejms.849

    Article  CAS  Google Scholar 

  • Szymańska A, Radulska A, Czaplewska P et al (2009) Governing the monomer-dimer ratio of human cystatin c by single amino acid substitution in the hinge region. Acta Biochim Pol 56:455–463

    PubMed  Google Scholar 

  • Terryberry JW, Thor G, Peter JB (1998) Autoantibodies in neurodegenerative diseases: antigen-specific frequencies and intrathecal analysis. Neurobiol Aging 19:205–216. doi:10.1016/S0197-4580(98)00049-9

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Cecal R, McLaurin J et al (2005) Identification and structural characterisation of carboxy-terminal polypeptides and antibody epitopes of Alzheimer’s amyloid precursor protein using high-resolution mass spectrometry. Eur J Mass Spectrom (Chichester, Eng) 11:547–556. doi:10.1255/ejms.722

    Article  CAS  Google Scholar 

  • Tian X, Maftei M, Kohlmann M et al (2007) Differential epitope identification of antibodies against intracellular domains of alzheimer’s amyloid precursor protein using high resolution affinity-mass spectrometry. Subcell Biochem 43:339–354

    Article  PubMed  Google Scholar 

  • Tissot JD, Schifferli JA, Hochstrasser DF et al (1994) Two-dimensional polyacrylamide gel electrophoresis analysis of cryoglobulins and identification of an IgM-associated peptide. J Immunol Methods 173:63–75

    Article  CAS  PubMed  Google Scholar 

  • Vu DH, Schneider P, Tissot JD (2002) Electrophoretic characteristics of monoclonal immunoglobulin G of different subclasses. J Chromatogr B Anal Technol Biomed Life Sci 771:355–368

    Article  CAS  Google Scholar 

  • Wahlbom M, Wang X, Lindström V et al (2007) Fibrillogenic oligomers of human cystatin C are formed by propagated domain swapping. J Biol Chem 282:18318–18326. doi:10.1074/jbc.M611368200

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Roettger Y, Tan B et al (2012) Human anti-prion antibodies block prion peptide fibril formation and neurotoxicity. J Biol Chem 287:12858–12866. doi:10.1074/jbc.M111.255836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Yu X (2009) An introduction to epitope prediction methods and software. Rev Med Virol 19:77–96. doi:10.1002/rmv.602

    Article  CAS  PubMed  Google Scholar 

  • Zerovnik E, Stoka V, Mirtic A et al (2011) Mechanisms of amyloid fibril formation–focus on domain-swapping. FEBS J 278:2263–2282. doi:10.1111/j.1742-4658.2011.08149.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Wang P, Kim Y et al (2008) Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Res 36:W513–W518. doi:10.1093/nar/gkn254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The project was financially supported by National Science Center, based on the decision no DEC-2012/05/E/ST5/03796. We would like to acknowledge DS 530-8440-D379-13 and MOBI4Health EU project which allowed us to use high quality mass spectrometers. MOBI4Health has received funding from the European Union’s Seventh Framework Program for research, technological development and demonstration under Grant Agreement No. 316094 and from the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulina Czaplewska.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: D. Tsikas.

The work was performed at the University of Gdansk, (Poland) and at Karolinska Institutet, Stockholm, (Sweden).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prądzińska, M., Behrendt, I., Spodzieja, M. et al. Isolation and characterization of autoantibodies against human cystatin C. Amino Acids 48, 2501–2518 (2016). https://doi.org/10.1007/s00726-016-2271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2271-7

Keywords

Navigation