Skip to main content
Log in

A primary natrocarbonatitic association in the Deep Earth

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In addition to ultramafic and mafic associations, a primary natrocarbonatitic association occurs in the lower mantle. To date, it was identified as inclusions in diamonds from the Juina area, Mato Grosso State, Brazil. It comprises almost 50 mineral species: carbonates, halides, fluorides, phosphates, sulfates, oxides, silicates, sulfides and native elements. In addition, volatiles are present in this association. Among oxides, coexisting periclase and wüstite were identified, pointing to the formation of the natrocarbonatitic association at a depth greater than 2000 km. Some iron-rich (Mg,Fe)O inclusions in diamond are attributed to the lowermost mantle. The initial lower-mantle carbonatitic melt formed as a result of low-fraction partial melting of carbon-containing lower-mantle material, rich in P, F, Cl and other volatile elements, at the core-mantle boundary. During ascent to the surface, the initial carbonatitic melt dissociated into two immiscible parts, a carbonate-silicate and a chloride-carbonate melt. The latter melt is parental to the natrocarbonatitic lower-mantle association. Diamonds with carbonatitic inclusions were formed in carbonatitic melts or high-density fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguado F, Rodriguez F, Hirai S, Walsh JN, Lennie A, Redfern SAT (2008) High-pressure behaviour of KMgF3 perovskites. High Press Res 28:539–544

    Article  Google Scholar 

  • Andrault D, Bolfan-Casanova N, Lo Nigro G, Bouhifd MA, Garbarino G, Mezoua M (2011) Solidus and liquidus profiles of chondritic mantle: implication for melting of the Earth across its history. Earth Planet Sci Lett 24:251–259

    Article  Google Scholar 

  • Bell K, Simonetti A (2010) Source of parental melts to carbonatites - critical isotopic constraints. Mineral Petrol 98:77–89

    Article  Google Scholar 

  • Biellmann C, Gillet P, Guyot F, Peyronneau J, Reynard B (1993) Experimental evidence for carbonate stability in the Earth’s lower mantle. Earth Planet Sci Lett 118:31–41

    Article  Google Scholar 

  • Boschi L, Becker TW, Steinberger B (2007) Mantle plumes: dynamic models and seismic images, Geochemistry, Geophysics. Geosystems 8(10), Q10006. doi:10.1029/2007GC001733

    Google Scholar 

  • Brenker FE, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Kaminsky F (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 260:1–9

    Article  Google Scholar 

  • Bunge H-P, Ricard Y, Matas J (2001) Non-adiabaticity in mantle convection. Geophys Res Lett 28(5):879–882

    Article  Google Scholar 

  • Collerson KD, Williams Q, Ewart AE, Murphy DT (2010) Origin of HIMU and EM-1 domains sampled by ocean island basalts, kimberlites and carbonatites: the role of CO2-fluxed lower mantle melting in thermochemical upwellings. Phys Earth Planet Inter 181:112–131

    Article  Google Scholar 

  • Courtillot V, Davaille A, Besse J, Stock J (2003) Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308

    Article  Google Scholar 

  • Dalou C, Koga KT, Hammouda T, Poitrasson F (2009) Trace element partitioning between carbonatitic melts and mantle transition zone minerals: Implications for the source of carbonatites. Geochim Cosmochim Acta 73:239–255

    Article  Google Scholar 

  • Dalton JA, Presnall DC (1998) Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa. Contrib Mineral Petrol 131:123–135

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13

    Article  Google Scholar 

  • da Silva CRS, Wentzcovitch RM, Patel A, Price GD, Karato SI (2000) The composition and geotherm of the lower mantle: constraints from the elasticity of silicate perovskite. Phys Earth Planet Inter 118:103–109

    Article  Google Scholar 

  • Dubrovinsky LS, Dubrovinskaia NA, Saxene SK, Annersten H, Halenius E, Harryson H, Tutti F, Rekhi S, Le Bihan T (2000) Stability of ferropericlase in the Lower Mantle. Science 289(5478):430–432

    Article  Google Scholar 

  • Ernst RE, Bell K (2010) Large igneous provinces (LIPs) and carbonatites. Mineral Petrol 98:55–76

    Article  Google Scholar 

  • Fiquet G, Auzende AL, Siebert J, Corgne A, Bureau H, Ozawa H, Garbarino G (2010) Melting of peridotite to 140 Gigapascals. Science 329:1516–1518

    Article  Google Scholar 

  • Hammouda T, Laporte D (2000) Ultrafast mantle impregnation by carbonatite melts. Geology 28:283–285

    Article  Google Scholar 

  • Hayden LA, Watson EB (2008) Grain boundary mobility of carbon in Earth’s mantle: a possible carbon flux from the core. Proc Natl Acad Sci U S A 105(25):8537–8541

    Article  Google Scholar 

  • International Union of Geological Sciences, Le Maitre RW (1989) A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell, Oxford

    Google Scholar 

  • Irving AJ, Wyllie PJ (1973) Melting relationships in CaO–CO2 and MgO–CO2 to 36 kbar with comments on CO2 in the mantle. Earth Planet Sci Lett 20:220–225

    Article  Google Scholar 

  • Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427(6969):60–63

    Article  Google Scholar 

  • Ivanov AB, Deutsch A (2002) The phase diagram of CaCO3 in relation to shock compression and decomposition. Phys Earth Planet Inter 129:131–143

    Article  Google Scholar 

  • Izraeli ES, Harris JW, Navon O (2001) Brine inclusions in diamonds: a new upper mantle fluid. Earth Planet Sci Lett 187:323–332

    Article  Google Scholar 

  • Javoy M (1997) The major volatile elements of the Earth: their origin, behavior, and fate. Geophys Res Lett 24:177–180

    Article  Google Scholar 

  • Kaminsky FV (2012) Mineralogy of the lower mantle: a review of ‘super-deep’ mineral inclusions in diamond. Earth Sci Rev 110:127–147

    Article  Google Scholar 

  • Kaminsky F, Wirth R, Matsyuk S, Schreiber A, Thomas R (2009) Nyerereite and nahcolite inclusions in diamond: evidence for lower-mantle carbonatitic magmas. Mineral Mag 73:797–816

    Article  Google Scholar 

  • Kaminsky FV, Wirth R, Schreiber A (2013) Carbonatitic inclusions in Deep Mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association. Can Mineral 51:669–688

    Article  Google Scholar 

  • Kaminsky FV, Wirth R, Schreiber A (2015a) A microinclusion of lower-mantle rock and some other lower-mantle inclusions in diamond. Can Mineral 53 (in press)

  • Kaminsky FV, McCammon C, Ryabchikov ID (2015b) Oxidation potential in the Earth’s lower mantle as recorded from ferropericlase inclusions in diamond. Contrib Mineral Petrol 13115 (in press).

  • Katsura T, Yoneda A, Yamazaki D, Yoshino T, Ito E (2010) Adiabatic temperature profile in the mantle. Phys Earth Planet Inter 183:212–218

    Article  Google Scholar 

  • Kiseeva ES, Litasov KD, Yaxley GM, Ohtani E, Kamenetsky VS (2013) Melting and phase relations of carbonated eclogite at 9–21 GPa and the petrogenesis of alkali rich melts in the deep mantle. J Petrol 54:1555–1583

    Article  Google Scholar 

  • Klein-BenDavid O, Wirth R, Navon O (2006) TEM imaging and analysis of microinclusions in diamonds: a close look at diamond-growing fluids. Am Mineral 91(2–3):353–365

    Article  Google Scholar 

  • Klein-BenDavid O, Logvinova AM, Schrauder M, Spetius ZV, Weiss Y, Hauri E, Kaminsky FV, Sobolev NV, Navon O (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds: a new type of diamond-forming fluid. Lithos 112S:648–659

    Article  Google Scholar 

  • Kono Y, Kenney-Benson C, Hummer D, Ohfuji H, Park C, Shen G, Wang Y, Kavner A, Manning CE (2014) Ultralow viscosity of carbonate melts at high pressures. Nat Commun 5:5091. doi:10.1038/ncomms6091

    Article  Google Scholar 

  • Kresten P (1983) Carbonatite nomenclature. Geol Rundsch 72:389–395

    Article  Google Scholar 

  • Lay T, Garnero EJ, Williams Q (2004) Partial melting in a thermo-chemical boundary layer at the base of the mantle. Phys Earth Planet Inter 146:441–467

    Article  Google Scholar 

  • Lin J-F, Liu J, Jacobs C, Prakapenka VB (2012) Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron. Am Mineral 97:583–591

    Article  Google Scholar 

  • Litasov KD, Ohtani E (2009) Phase relations in the peridotite–carbonate–chloride system at 7.0–16.5 GPa and the role of chlorides in the origin of kimberlite and diamond. Chem Geol 262:29–41

    Article  Google Scholar 

  • Litasov KD, Shatskiy A, Ohtani E (2013a) Earth’s mantle melting in the presence of C-O-H–bearing fluid. In: Karato S (ed) Physics and chemistry of the deep Earth. Wiley-Blackwell, New York, pp 38–65

    Chapter  Google Scholar 

  • Litasov KD, Shatskiy A, Ohtani E, Yaxley GM (2013b) Solidus of alkaline carbonatite in the deep mantle. Geology 41:79–82

    Article  Google Scholar 

  • Litvin YA (2009) The physicochemical conditions of diamond formation in the mantle matter: experimental studies. Russ Geol Geophys 50:1188–1200

    Article  Google Scholar 

  • Litvin Y, Spivak A, Solopova N, Dubrovinsky L (2014) On origin of lower-mantle diamonds and their primary inclusions. Phys Earth Planet Inter 228:176–185

    Article  Google Scholar 

  • Liu L, Lin C (1997) A calcite-aragonite-type phase transition in CdCO3. Am Mineral 82:643–646

    Article  Google Scholar 

  • Luth RW (2001) Experimental determination of the reaction aragonite + magnesite = dolomite at 5 to 9 GPa. Contrib Mineral Petrol 141:222–232

    Article  Google Scholar 

  • Mao Z, Armentrout M, Rainey E, Manning CE, Dera P, Prakapenka VB, Kavner A (2011) Dolomite III: a new candidate lower mantle carbonate. Geophys Res Lett 38, L22303. doi:10.1029/2011GL049519

    Google Scholar 

  • Matas J, Bass JD, Ricard Y, Mattern E, Bukowinsky MS (2007) On the bulk composition of the lower mantle: predictions and limitations from generalized inversion of radial seismic profiles. Geophys J Int 170:764–780

    Article  Google Scholar 

  • McDonough WF (2003) Compositional model for the Earth’s core. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry. Pergamon, Oxford, pp 547–568

    Chapter  Google Scholar 

  • McNamara AK, Garnero EJ, Rost S (2010) Tracking deep mantle reservoirs with ultra-low velocity zones. Earth Planet Sci Lett 299:1–9

    Article  Google Scholar 

  • Merlini M, Crichton W, Hanfland M, Gemmi M, Müller H, Kupenko I, Dubrovinsky L (2012) Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proc Natl Acad Sci U S A 109:13509–13514

    Article  Google Scholar 

  • Merlini M, Crichton WA, Chantel J, Guignard J, Poli S (2014) Evidence of interspersed co-existing CaCO3-III and CaCO3-IIIb structures in polycrystalline CaCO3 at high pressure. Mineral Mag 78:225–233

    Article  Google Scholar 

  • Mitchell RH (2005) Carbonatites and carbonatites and carbonatites. Can Mineral 43:2049–2068

    Article  Google Scholar 

  • Oganov AR, Glass CW, Ono S (2006) High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet Sci Lett 241:95–103

    Article  Google Scholar 

  • Oganov AR, Ono S, Ma Y, Glass CW, Garcia A (2008) Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth’s lower mantle. Earth Planet Sci Lett 273:38–47

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y (2007) High-pressure transition of CaCO3. Am Mineral 92:1246–1249

    Article  Google Scholar 

  • Palme H, O’Neill HSC (2003) Cosmochemical estimates of mantle composition. In: Carlson RW (ed) Treatise on geochemistry the mantle and core Vol. 2, Elsevier, Amsterdam, pp. 1–38

  • Palyanov YN, Shatsky VS, Sobolev NV, Sokol AG (2007) The role of mantle ultrapotassic fluids in diamond formation. Proc Natl Acad Sci U S A 104(22):9122–9127

    Article  Google Scholar 

  • Panero WR, Kabbes JE (2008) Mantle-wide sequestration of carbon in silicates and the structure of magnesite II. Geophys Res Lett 35, L14307. doi:10.1029/2008gl034442

    Article  Google Scholar 

  • Ryabchikov ID, Hamilton DL (1993a) Interaction of carbonate–phosphate melts with mantle peridotites at 20–35 kbar. S Afr J Geol 96:143–148

    Google Scholar 

  • Ryabchikov ID, Hamilton DL (1993b) Near-solidus carbonate–phosphate melts in mantle peridotites. Geokhimiya 12:1151–1160

    Google Scholar 

  • Ryabchikov ID, Kaminsky FV (2013) Redox potential of diamond formation processes in the lower mantle. Geol Ore Depos 55:1–12

    Article  Google Scholar 

  • Ryabchikov ID, Orlova GP, Senin VG, Trubkin NV (1991) Interphase distribution of rare earth elements during partial melting in the system peridotite-carbonate-phosphate. Geologhiya Rudnykh Mestorozhdeniy 3:78–86 (in Russian)

    Google Scholar 

  • Safonov OG, Kamenetsky VS, Perchuk LL (2011) Links between carbonatite and kimberlite melts in chloride-carbonate-silicate systems: Experiments and application to natural assemblages. J Petrol 52:1307–1331

    Article  Google Scholar 

  • Santillán J, Williams Q (2004a) A high pressure X-ray diffraction study of aragonite and the post-aragonite phase transition in CaCO3. Am Mineral 89:1348–1352

    Article  Google Scholar 

  • Santillán J, Williams Q (2004b) A high-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2-dolomite. Phys Earth Planet Inter 143–144:291–304

    Article  Google Scholar 

  • Santillán J, Williams Q, Knittle E (2003) Dolomite‐II: a high-pressure polymorph of CaMg(CO3)2. Geophys Res Lett 30:1054. doi:10.1029/2002GL016018

    Article  Google Scholar 

  • Santillán J, Katalli K, Williams Q (2005) An infrared study of carbon-oxygen bonding in magnesite to 60 GPa. Am Mineral 90:1669–1673

    Article  Google Scholar 

  • Scott HP, Doczy VM, Frank MR, Hasan M, Lin J-F, Yang J (2013) Magnesite formation from MgO and CO2 at the pressures and temperatures of Earth’s mantle. Am Mineral 98:1211–1218

    Article  Google Scholar 

  • Seto Y, Hamane D, Nagai T, Fujino K (2008) Fate of carbonates within oceanic plates subducted to the lower mantle, and a possible mechanism of diamond formation. Phys Chem Miner 35:223–229

    Article  Google Scholar 

  • Shim SH, Duffy T, Shen G (2000) The stability and P–V–T equation of state of CaSiO3 perovskite in the Earth’s lower mantle. J Geophys Res 105(B11):25955–25968

    Article  Google Scholar 

  • Shirasaka M, Takahashi E, Nishihara Y, Matsukage K, Kikegawa T (2002) In situ X‐ray observation of the reaction dolomite = aragonite + magnesite at 900–1300 K. Am Mineral 87:922–930

    Article  Google Scholar 

  • Schrauder M, Navon O (1994) Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim Cosmochim Acta 58:761–771

    Article  Google Scholar 

  • Skorodumova NV, Belonoshko AB, Huang L, Ahuja R, Johansson B (2005) Stability of the MgCO3 structures under lower mantle conditions. Am Mineral 90:1008–1011

    Article  Google Scholar 

  • Smith E (2014) Fluid inclusions in fibrous and octahedrally-grown diamonds. Ph.D. Thesis, University of British Columbia, p 195

  • Sobolev NV, Kaminsky FV, Griffin WL, Yefimova ES, Win TT, Ryan CG, Botkunov AI (1997) Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia. Lithos 39:135–157

    Article  Google Scholar 

  • Solopova NA, Dubrovinsky L, Spivak AV, Litvin YA, Dubrovinskaia N (2014) Melting and decomposition of MgCO3 at pressures up to 84 GPa. Phys Chem Miner. doi:10.1007/s00269-014-0701-1

    Google Scholar 

  • Sonin VM, Zhimulev EI, Chepurov AI, Fedorov II (2008) Diamond stability in NaCl and NaF melts at high pressure. Dokl Earth Sci 420:641–643

    Article  Google Scholar 

  • Stixrude L, Lithgow-Bertelloni С (2007) Influence of phase transformations on lateral heterogeneity and dynamics in Earth’s mantle. Earth Planet Sci Lett 263(1–2):45–55

    Article  Google Scholar 

  • Thomson AR, Walter MJ, Lord OT, Kohn SC (2014) Experimental determination of melting in the systems enstatite-magnesite and magnesite-calcite from 15 to 80 GPa. Am Mineral 99:1544–1554

    Article  Google Scholar 

  • Tschauner O, Ma C, Becket JR, Prescher C, Prakapenka VB, Rossman GR (2014) Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science 346(6213):1100–1102

    Article  Google Scholar 

  • Wang A, Pasteris JD, Meyer HOA, Dele-Duboi ML (1996) Magnesite-bearing inclusion assemblage in natural diamond. Earth Planet Sci Lett 141:293–306

    Article  Google Scholar 

  • Weiss Y, Kiflawi I, Davies N, Navon O (2014) High density fluids and the growth of monocrystalline diamonds. Geochim Cosmochim Acta 141:145–159

    Article  Google Scholar 

  • Wen L, Helmberger DV (1998) Ultra-low velocity zones near the core-mantle boundary from broadband PKP precursors. Science 279:1701–1703

    Article  Google Scholar 

  • Wirth R, Rocholl A (2003) Nano-crystalline diamond from the Earth mantle underneath Hawaii. Earth Planet Sci Lett 211:357–369

    Article  Google Scholar 

  • Wirth R, Kaminsky F, Matsyuk S, Schreiber A (2009) Unusual micro- and nano-inclusions in diamonds from the Juina Area, Brazil. Earth Planet Sci Lett 286:292–303

    Article  Google Scholar 

  • Wirth R, Dobrzhinetskaya L, Harte B, Schreiber A, Green HW (2014) High-Fe (Mg, Fe)O inclusion in diamond apparently from the lowermost mantle. Earth Planet Sci Lett 404:365–376

    Article  Google Scholar 

  • Wyllie PJ, Ryabchikov ID (2000) Volatile components, magmas, and critical fluids in upwelling mantle. J Petrol 41:1195–1206

    Article  Google Scholar 

  • Zaitsev AN, Keller J (2006) Mineralogical and chemical transformation of Oldoinyo Lengai natrocarbonatites, Tanzania. Lithos 91:191–207

    Article  Google Scholar 

  • Zaitsev AN, Wenzel T, Vennemann T, Mark G (2014) Tinderet volcano, Kenya: an altered natrocarbonatite locality? Mineral Mag 77:213–226

    Article  Google Scholar 

  • Zerr A, Diegeler A, Boehler R (1998) Solidus of the Earth’s Deep Mantle. Science 281(5374):243–246

    Article  Google Scholar 

  • Zhang Y, Zindler A (1993) Distribution and evolution of carbon and nitrogen in Earth. Earth Planet Sci Lett 117:331–345

    Article  Google Scholar 

  • Zhong S (2006) Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature. J Geophys Res 111, B04409. doi:10.1029/2005JB003972

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to L. Kogarko and the anonymous reviewer. Their constructive notes helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix V. Kaminsky.

Additional information

Editorial handling: L. G. Gwalani

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaminsky, F.V., Ryabchikov, I.D. & Wirth, R. A primary natrocarbonatitic association in the Deep Earth. Miner Petrol 110, 387–398 (2016). https://doi.org/10.1007/s00710-015-0368-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-015-0368-4

Keywords

Navigation