Skip to main content

Advertisement

Log in

Petrogenesis and thermal history of the Yulong porphyry copper deposit, Eastern Tibet: insights from U-Pb and U-Th/He dating, and zircon Hf isotope and trace element analysis

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Yulong porphyry copper deposit (6.5 Mt at 0.46 % Cu) in eastern Tibet was formed in a post-collisional setting. New zircon U–Pb and U–Th/He ages, apatite U–Th/He ages and in-situ zircon Hf isotopic and trace element data for the Yulong ore-bearing adakitic porphyries elucidate the thermal history and petrogenesis of the deposit. Zircon U–Pb ages range from from 41.2 Ma to 40.7 Ma, indicating an Eocene formation age. Combined with the zircon U–Th/He age of 37.5 ± 1.2 Ma, results suggest that magmatic-hydrothermal evolution lasted up to 5 m.y. The apatite U–Th/He age of 33.4 ± 0.9 Ma reflects Yulong deposit exhumation during the ~33–30 Ma Tibetan uplift. Moreover, the high εHf(t)-values (7.1 ~ 12.2) zircon yield the highest ΣREE content, higher Y/Hf, lower Ce/Ce* and higher Th/U ratios compared to inherited zircon or magmatic zircon suggesting that the high εHf(t) zircon crystallized from another magma, and that magma mixing probably contributed to the adakitic porphyries at Yulong. In addition, inherited and magmatic zircon with the lowest εHf(t) values (−20.6 ~ −4.4) suggest crustal contamination. The positive zircon εHf(t) values indicate a source in the juvenile arc lower crust. Significantly, the juvenile arc lower crust inherited arc magma characteristics (abundant F, Cl, Cu and high oxidation state), which are now found in the porphyry Cu–Mo deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Andersen T (2002) Correction of common lead in U–Pb analyses that do not report 204Pb. Chem Geol 192:59–79

    Article  Google Scholar 

  • Arribas A, Hedenquist JW, Itaya T, Okada T, Concepcion RA, Garcia JS (1995) Contemporaneous formation of adjacent porphyry and epithermal Cu–Au deposits over 300 Ka in Northern Luzon, Philippines. Geology 23:337–340

    Article  Google Scholar 

  • Ballard JR, Palin JM, Williams IS, Campbell IH, Faunes A (2001) Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology 29:383–386

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170

    Article  Google Scholar 

  • Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57

    Article  Google Scholar 

  • Bowring SA, Schmitz MD (2003) High-precision U–Pb zircon geochronology and the stratigraphic record. Rev Mineral Geochem 53:305–326

    Article  Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  • Castillo PR, Janney PE, Solidum RU (1999) Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol 134:33–51

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–500

    Article  Google Scholar 

  • Dai SA, Fang XM, Song CH, Gao JP, Gao DL, Li JJ (2005) Early tectonic uplift of the northern Tibetan Plateau. Chin Sci Bull 50:1642–1652

    Article  Google Scholar 

  • Deckart K, Clark AH, Aguilar C, Vargas R, Bertens A, Mortensen JK, Fanning M (2005) Magmatic and hydrothermal chronology of the giant Rio Blanco porphyry copper deposit, central Chile: implications of an integrated U–Pb and 40Ar/39Ar database. Econ Geol 100:905–934

    Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Deng WM, Sun HJ, Zhang YQ (2001) Petrogenesis of Cenozoic potassic volcanic rocks in Nangqen Basin. Chin J Geol 36:304–318 (in Chinese with English abstract)

    Google Scholar 

  • Ehlers TA, Farley KA (2003) Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet Sci Lett 206:1–14

    Article  Google Scholar 

  • Evans NJ, Byrne JP, Keegan JT, Dotter LE (2005) Determination of uranium and thorium in zircon, apatite, and fluorite: application to laser (U–Th)/He thermochronology. J Anal Chem 60:1159–1165

    Article  Google Scholar 

  • Farley KA (2002) (U–Th)/He dating: techniques, calibrations, and applications. Rev Mineral Geochem 47:819–844

    Article  Google Scholar 

  • Farley KA, Wolf RA, Silver LT (1996) The effects of long alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Acta 60:4223–4229

    Article  Google Scholar 

  • Foley S, Tiepolo M, Vannucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417:837–840

    Article  Google Scholar 

  • Fu FQ, McInnes BIA, Evans NJ, Davies PJ (2010) Numerical modeling of magmatic-hydrothermal systems constrained by U–Th–Pb–He time–temperature histories. J Geochem Explor 106:90–109

    Article  Google Scholar 

  • Gao J, Klemd R, Long LL, Xiong XM, Qian Q (2009) Adakitic signature formed by fractional crystallization: an interpretation for the Neo-Proterozoic meta-plagiogranites of the NE Jiangxi ophiolitic melange belt, South China. Lithos 110:277–293

    Article  Google Scholar 

  • Gao YF, Yang ZS, Santosh M, Hou ZQ, Wei RH, Tian SH (2010) Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet. Lithos 119:651–663

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu XS, Zhou XM (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269

    Article  Google Scholar 

  • Gu XX, Tang JX, Wang CS, Chen JP, He BB (2003) Himalayan magmatism and porphyry copper–molybdenum mineralization in the Yulong ore belt, East Tibet. Miner Petrol 78:1–20

    Article  Google Scholar 

  • Guo LG, Liu YP, Xu W, Zhang XC, Qin KZ, Li TS, Shi YR (2006) Constraints to the mineralization age of the Yulong porphyry copper deposit from SHRIMP U–Pb zircon data in Tibet. Acta Petrol Sin 22:1009–1016 (in Chinese with English abstract)

    Google Scholar 

  • Halter W, Heinrich C, Pettke T (2005) Magma evolution and the formation of porphyry Cu–Au ore fluids: evidence from silicate and sulfide melt inclusions. Miner Depos 39:845–863

    Article  Google Scholar 

  • Harris AC, Dunlap WJ, Reiners PW, Allen CM, Cooke DR, White NC, Campbell IH, Golding SD (2008) Multimillion year thermal history of a porphyry copper deposit: application of U–Pb, Ar-40/Ar-39 and (U–Th)/He chronometers, Bajo de la Alumbrera copper–gold deposit, Argentina. Miner Depos 43:295–314

    Article  Google Scholar 

  • Hess JC, Lippolt HJ (1986) Kinetics of Ar isotopes during neutron-irradiation 39Ar loss from minerals as a source of error in 40Ar/39Ar dating. Chem Geol 59:223–236

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62

    Article  Google Scholar 

  • Hou ZQ, Ma HW, Zaw K, Zhang YQ, Wang MJ, Wang Z, Pan GT, Tang RL (2003) The Himalayan Yulong porphyry copper belt: product of large-scale strike-slip faulting in eastern Tibet. Econ Geol 98:125–145

    Google Scholar 

  • Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX (2004) Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet Sci Lett 220:139–155

    Article  Google Scholar 

  • Hou ZQ, Zeng PS, Gao YF, Du AD, Fu DM (2006) Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone: constraints from Re-Os dating of molybdenite. Miner Depos 41:33–45

    Google Scholar 

  • Hou ZQ, Xie YL, Xu WY, Li YQ, Zhu XK, Khin Z, Beaudoin G, Rui ZY, Wei HA, Ciren L (2007) Yulong deposit, eastern Tibet: a high-sulfidation Cu–Au porphyry copper deposit in the eastern Indo-Asian collision zone. Int Geol Rev 49:235–258

    Article  Google Scholar 

  • Hou ZQ, Yang ZM, Qu XM, Meng XJ, Li ZQ, Beaudoin G, Rui ZY, Gao YF, Zaw K (2009) The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geol Rev 36:25–51

    Article  Google Scholar 

  • Hou ZQ, Zhang HR, Pan XF, Yang ZM (2011) Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain. Ore Geol Rev 39:21–45

    Article  Google Scholar 

  • Hourigan JK, Reiners PW, Brandon MT (2005) U–Th zonation-dependent alpha-ejection in (U–Th)/He chronometry. Geochim Cosmochim Acta 69:3349–3365

    Article  Google Scholar 

  • House MA, Wernicke BP, Farley KA (1998) Dating topography of the Sierra Nevada, California, using apatite (U–Th)/He ages. Nature 396:66–69

    Article  Google Scholar 

  • Ji WQ, Wu FY, Chung SL, Li JX, Liu CZ (2009) Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem Geol 262:229–245

    Article  Google Scholar 

  • Jiang YH, Jiang SY, Ling HF, Dai BZ (2006) Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: geochemical and Sr–Nd–Pb–Hf isotopic constraints. Earth Planet Sci Lett 241:617–633

    Article  Google Scholar 

  • Jiang YH, Jiang SY, Dai BZ, Ling HF (2008) Discrimination of ore-bearing and barren porphyries in the Yulong porphyry copper ore belt, eastern Tibet. Int Geol Rev 50:583–595

    Article  Google Scholar 

  • Karsli O, Dokuz A, Uysal I, Aydin F, Kandemir R, Wijbrans J (2010) Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos 114:109–120

    Article  Google Scholar 

  • Li GM, Li JX, Qin KZ, Zhang TP, Xiao B (2007) High temperature, salinity and strong oxidation ore-forming fluid at Duobuza gold-rich porphyry copper deposit in the Bangonghu tectonic belt, Tibet: evidence from fluid inclusions. Acta Petrol Sin 23:935–952 (in Chinese with English abstract)

    Google Scholar 

  • Li JX, Li GM, Qin KZ, Xiao B (2008) Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Bangonghu belt, Tibet: constraints on metallogenic tectonic settings. Acta Petrol Sin 24:531–543 (in Chinese with English abstract)

    Google Scholar 

  • Li JX, Li GM, Qin KZ, Xiao B (2011a) High temperature primary magmatic fluid directly exsolved from magma at Duobuza gold-rich porphyry copper deposit, Northern Tibet. Geofluids 11:134–143

    Article  Google Scholar 

  • Li JX, Qin KZ, Li GM, Xiao B, Chen L, Zhao JX (2011b) Post-collisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt, southern Tibet: melting of thickened juvenile arc lower crust. Lithos 126:265–277

    Article  Google Scholar 

  • Li JX, Qin KZ, Li GM, Xiao B, Zhao JX, Chen L (2011c) Magmatic-hydrothermal evolution of cretaceous Duolong gold-rich porphyry copper deposit in Bangongco metallogenic belt, Tibet: evidence from U–Pb and 40Ar/39Ar geochronology. J Asian Earth Sci 41:525–536

    Article  Google Scholar 

  • Li GM, Li JX, Qin KZ, Duo J, Zhang TP, Xiao B, Zhao JX (2012a) Geology and hydrothermal alteration of the Duobuza gold-rich porphyry copper district in the Bangongco metallogenetic belt, Northwestern Tibet. Resour Geol 62:99–118

    Article  Google Scholar 

  • Li JX, Li GM, Qin KZ, Xiao B, Chen L, Zhao JX (2012b) Mineralogy and mineral chemistry of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco arc, northern Tibet. Resour Geol 62:19–41

    Article  Google Scholar 

  • Liang HY, Campbell IH, Allen C, Sun WD, Liu CQ, Yu HX, Xie YW, Zhang YQ (2006) Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Miner Depos 41:152–159

    Article  Google Scholar 

  • Liang HY, Mo JH, Sun WD, Yu HX, Zhang YQ, Allen CM (2008) Study on the duration of the ore-forming system of the Yulong giant porphyry copper deposit in eastern Tibet, China. Acta Petrol Sin 24:2352–2358 (in Chinese with English abstract)

    Google Scholar 

  • Liang HY, Sun WD, Su WC, Zartman RE (2009) Porphyry copper–gold mineralization at Yulong, China: promoted by decreasing redox potential during magnetite alteration. Econ Geol 104:587–596

    Article  Google Scholar 

  • Ludwig KR (2003) ISOPLOT 3.0: a geochronological toolkit for microsoft excel. Berkeley Geochronology Center, Special publication 1–71

  • Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243:581–593

    Article  Google Scholar 

  • Maksaev V, Munizaga F, McWilliams M, Fanning M, Marthur R, Ruiz J, Zentilli M (2004) New chronology for EI Teniente, Chilean Andes, from U–Pb, 40Ar/39Ar, Re–Os, and fission track dating: implications for the evolution of a supergiant porphyry Cu–Mo deposit. Soc Econ Geol Spec Publ 11:15–54

    Google Scholar 

  • Marsh TM, Einaudi MT, McWilliams M (1997) 40Ar/39Ar geochronology of Cu–Au and Au–Ag mineralization in the Potrerillos District, Chile. Econ Geol 92:784–806

    Article  Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford, New York

    Google Scholar 

  • McInnes BIA, Cameron EM (1994) Carbonated, alkaline hybridizing melts from a sub-arc environment—mantle wedge samples from the Tabar-Lihir Tanga-Feni Arc, Papua-New-Guinea. Earth Planet Sci Lett 122:125–141

    Article  Google Scholar 

  • McInnes BIA, Evans NJ, Fu FQ, Garwin S (2005) Application of thermochronology to hydrothermal ore deposits. Rev Mineral Geochem 58:467–498

    Article  Google Scholar 

  • Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD, Yang ZM (2007) Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96:225–242

    Article  Google Scholar 

  • Moyen JF (2009) High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos 112:556–574

    Article  Google Scholar 

  • Mungall JE (2002) Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30:915–918

    Article  Google Scholar 

  • Norton DL (1982) Fluid and heat transport phenomena typical of copper-bearing pluton environments, southeastern Arizona. In: Titley SR (ed) Advances in geology of porphyry copper deposits; southwestern North America. University of Arizona Press, Tucson, pp 59–73

    Google Scholar 

  • Padilla-Garza RA, Titley SR, Eastoe CJ (2004) Hypogene evolution of the Escondida porphyry copper deposit, Chile. Soc Econ Geol Spec Publ 11:141–165

    Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic-rocks from Kastamonu Area, Northern Turkey. Contrib Mineral Petrol 58:63–81

    Article  Google Scholar 

  • Peytcheva I, von Quadt A, Georgiev N, Ivanov Z, Heinrich CA, Frank M (2008) Combining trace-element compositions, U–Pb geochronology and Hf isotopes in zircon to unravel complex calcalkaline magma chambers in the Upper Cretaceous Srednogorie zone (Bulgaria). Lithos 104:405–427

    Article  Google Scholar 

  • Peytcheva I, von Quadt A, Neubauer F, Frank M, Nedialkov R, Heinrich C, Strashimirov S (2009) U–Pb dating, Hf-isotope characteristics and trace-REE-patterns of zircon from Medet porphyry copper deposit, Bulgaria: implications for timing, duration and sources of ore-bearing magmatism. Miner Petrol 96:19–41

    Article  Google Scholar 

  • Qin KZ, Tosdal RM, Li GM, Zhang Q, Li JL (2005) Formation of the Miocene porphyry Cu (-Mo-Au) deposits in the Gangdese arc, southern Tibet, in a transitional tectonic setting. Miner Depos Res Meet Chall 3:44–47

    Google Scholar 

  • Qu XM, Hou ZQ, Li YG (2004) Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos 74:131–148

    Article  Google Scholar 

  • Qu XM, Hou ZQ, Zaw K, Mo XX, Xu WY, Xin HB (2009) A large-scale copper ore-forming event accompanying rapid uplift of the southern Tibetan Plateau: evidence from zircon SHRIMP U–Pb dating and LA ICP-MS analysis. Ore Geol Rev 36:52–64

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32-Kbar—implications for continental growth and crust–mantle recycling. J Petrol 36:891–931

    Google Scholar 

  • Rapp RP, Xiao L, Shimizu N (2002) Experimental constraints on the origin of potassium-rich adakites in eastern China. Acta Petrol Sin 18:293–302

    Google Scholar 

  • Reiners PW (2005) Zircon (U–Th)/He thermochronometry. Rev Mineral Geochem 58:151–179

    Article  Google Scholar 

  • Richards JP (2009) Postsubduction porphyry Cu–Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology 37:247–250

    Article  Google Scholar 

  • Richards JP (2011) Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol Rev 40:1–26

    Article  Google Scholar 

  • Shafiei B, Haschke M, Shahabpour J (2009) Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Miner Depos 44:265–283

    Article  Google Scholar 

  • Sillitoe RH (1997) Characteristics and controls of the largest porphyry copper–gold and epithermal gold deposits in the circum-Pacific region. Aust J Earth Sci 44:373–388

    Article  Google Scholar 

  • Sillitoe RH, Mortensen JK (2010) Longevity of porphyry copper formation at Quellaveco, Peru. Econ Geol 105:1157–1162

    Article  Google Scholar 

  • Söderlund U, Patchett JP, Vervoort JD, Isachsen CE (2004) The Lu-176 decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324

    Article  Google Scholar 

  • Sun SS, McDonough WE (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition an processes In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geological Society of London, Special Publication, pp 313–345

  • Tang RL, Luo HS (1995) The geology of Yulong porphyry copper (molybdenum) ore belt, Xizang (Tibet). Geological Publishing House, Beijing, p 320, in Chinese with English abstract

    Google Scholar 

  • Vervoort JD, Blichert-Toft J (1999) Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta 63:533–556

    Article  Google Scholar 

  • von Quadt A, Erni M, Martinek K, Moll M, Peytcheva I, Heinrich CA (2011) Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems. Geology 39:731–734

    Article  Google Scholar 

  • Wang F, Lo CH, Li Q, Wan JL, Zheng DW, Wang EQ (2002) Unroofing around Qaidam Basin of northern Tibet at 30 Ma: constraints from 40Ar/39Ar and FT thermochronology on granitoids. Sci China Ser D 45:70–83

    Article  Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Vonquadt A, Roddick JC, Speigel W (1995) 3 natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses. Geostand Newsl 19:1–23

    Article  Google Scholar 

  • Wu FY, Yang YH, Xie LW, Yang JH, Xu P (2006) Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem Geol 234:105–126

    Article  Google Scholar 

  • Xiao B, Qin KZ, Li GM, Li JX, Xia DX, Chen L, Zhao JX (2012) Highly oxidized magma and fluid evolution of Miocene Qulong giant porphyry Cu–Mo deposit, southern Tibet, China. Resour Geol 62:4–18

    Article  Google Scholar 

  • Xie YL, Hou ZQ, Xu JH, Yang ZM, Xu WY, He JP (2005) Evolution of multi-stage ore-forming fluid and mineralization: evidence form fluid inclusions in Yulong porphyry copper deposit, East Tibet. Acta Petrol Sin 21:1409–1415 (in Chinese with English abstract)

    Google Scholar 

  • Xie LW, Zhang YB, Zhang HH, Sun JF, Wu FY (2008) In situ simultaneous determination of trace elements, U–Pb and Lu–Hf isotopes in zircon and baddeleyite. Chin Sci Bull 53:1565–1573

    Article  Google Scholar 

  • Xu WC, Zhang HF, Guo L, Yuan HL (2010) Miocene high Sr/Y magmatism, south Tibet: product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos 114:293–306

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan–Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Zhang YQ, Xie YW (1997) Geochronology of Ailaoshan-Jinshajing alkali-rich intrusive rocks and their Sr and Nd isotopic characteristics. Sci China Ser D 40:524–529

    Article  Google Scholar 

  • Zhong DL, Ding L (1996) Rising process of the Qinghai-Xizang (Tibet) plateau and its mechanism. Sci China Ser D 39:369–379

    Google Scholar 

Download references

Acknowledgments

We thank Yue-Heng Yang for help with zircon LA-ICP-MS analyses, Brad McDonald and Celia Mayers for (U-Th)/He analyses, and Xin Yan and Sai-Hong Yang for zircon CL images. This study was funded by National Natural Science Foundation Project (40902027, 41072059 and 40772066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinxiang Li.

Additional information

Editorial handling: J. Kosler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Qin, K., Li, G. et al. Petrogenesis and thermal history of the Yulong porphyry copper deposit, Eastern Tibet: insights from U-Pb and U-Th/He dating, and zircon Hf isotope and trace element analysis. Miner Petrol 105, 201–221 (2012). https://doi.org/10.1007/s00710-012-0211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-012-0211-0

Keywords

Navigation