Skip to main content
Log in

Distinguishing natural from synthetic amethyst: the presence and shape of the 3595 cm−1 peak

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The infrared absorption spectrum of amethyst in the region of stretching vibrations of X–OH groups reveals several bands that have been used for the separation of natural from synthetic amethyst. The intensity and shape of these bands have been measured as a function of crystallographic orientation. Using a resolution of 0.5 cm−1 the 3595 cm−1 band is present in all infrared spectra of natural amethyst and in some rare synthetic ones. If present in synthetic amethyst, its full width at half maximum (FWHM) is about 7 cm−1 whereas it is about 3 cm−1 in all natural samples. This new criterion, unlike the previous ones, seems appropriate to separate natural from synthetic amethyst in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balitsky VS, Khetchikov LN, Orlova VP, Balitskaya LV (1975) Process for producing an amethyst crystal. England, patent specification 1408979, filed November 28, 1973, issued October 8, 1975

  • VS Balitsky (1977) ArticleTitleGrowth of large amethyst crystals from hydrothermal fluoride solutions. J Cryst Growth 41 100–102 Occurrence Handle10.1016/0022-0248(77)90102-6

    Article  Google Scholar 

  • VS Balitsky (1978) ArticleTitleLes conditions de formation des améthystes et leur croissance artificielle. Bull Mineral 101 383–386

    Google Scholar 

  • VS Balitsky (1981) ArticleTitleGemmology of some colored varieties of synthetic quartz. J Gem Soc Jpn 8 103–117

    Google Scholar 

  • VS Balitsky GV Bondarenko OV Balitskaya DV Balitsky (2004) ArticleTitleIR spectroscopy of natural and synthetic amethysts in the 3000–3700 cm−1 region and problems of their identification. Dokl Earth Sci 394 120–123

    Google Scholar 

  • VS Balitsky DV Balitsky GV Bondarenko OV Balitskaya (2004) ArticleTitleThe 3543 cm−1 infrared absorption band in natural and synthetic amethyst and its value in identification. Gems Gemol 40 146–161

    Google Scholar 

  • R Crowningshield C Hurlbut CW Fryer (1986) ArticleTitleA simple procedure to separate natural from synthetic amethyst on the basis of twinning. Gems Gemol 22 130–139

    Google Scholar 

  • E Fritsch JI Koivula (1987) ArticleTitleHow to tell if that amethyst is natural. Jewelers’ Circular Keystone 158 322–324

    Google Scholar 

  • E Fritsch JI Koivula (1988) ArticleTitleHow to tell natural amethyst. Jewelers’ Circular Keystone 154 244–248

    Google Scholar 

  • E Fritsch JI Koivula (1989) ArticleTitleThe growth of Brazil-twinned synthetic quartz and the potential for synthetic amethyst twinned on the Brazil law. Gems Gemol 25 159–164

    Google Scholar 

  • E Fritsch SF McClure (1995) ArticleTitleSynthetic amethyst: features of new type from Russia. Jewellery News Asia 129 90–92

    Google Scholar 

  • S Karampelas E Fritsch (2004) ArticleTitleInfrared absorption as a useful tool to separate natural from synthetic amethysts. Mitt Österr Mineral Ges 149 43

    Google Scholar 

  • Kats A (1962) Hydrogen in alpha-quartz. Philips Res Rep, 279 pp

  • Khadzhi VE, Tsyganov ME, Tsinober LI, Novozhilova ZV, Reshetova GV, Samoilovich MI, Butuzov VP, Shaposhnikov AA, Lelekova ML (1975) Process for producing an amethyst crystal. England, patent specification 1408383, filed January 18, 1973, issued October 1, 1975

  • H Kitawaki (2002) ArticleTitleNatural amethysts from Caxarai mine, Brazil, with a spectrum containing an absorption peak at 3543 cm−1. J Gemmol Proc Gemmol Assoc GB 28 101–108

    Google Scholar 

  • F Notari PY Boillat C Grobon (2001) ArticleTitleDiscrimination des améthystes et des citrines naturelles et synthétiques. Rev Gemmol AFG 141/142 75–80

    Google Scholar 

  • Smaali M (1998) Hétérodiffusion et irradiation gamma du quartz alpha. Mémoire de thèse de doctorat, Université de Franche-Comté, Besançon, France, 134 pp

  • PA Staats OC Kopp (1974) ArticleTitleStudies on the origin of the 3400 cm−1 region infrared bands of synthetic and natural α-quartz. J Phys Chem Solids 35 1029–1033

    Google Scholar 

  • CM Stockton E Fritsch (1987) ArticleTitleInfrared spectroscopy in gem identification. Gems Gemmol 23 18–26

    Google Scholar 

  • P Zecchini M Smaali (1999) ArticleTitleIdentification de l’origine naturelle ou artificielle des quartz. Rev Gemmol AFG 138/139 74–80

    Google Scholar 

  • P Zecchini (1979) ArticleTitleEtude de l’absorption infrarouge de quartz d’origine naturelle ou de synthèse. Rev Gemmol AFG 60 14–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karampelas, S., Fritsch, E., Zorba, T. et al. Distinguishing natural from synthetic amethyst: the presence and shape of the 3595 cm−1 peak. Mineralogy and Petrology 85, 45–52 (2005). https://doi.org/10.1007/s00710-005-0101-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-005-0101-9

Keywords

Navigation