Skip to main content
Log in

Multi-scale model of steady-wave shock in medium with relaxation

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The propagation of a steady wavefront in a medium with three levels of plastic deformation is considered: (a) dislocation, (b) meso-scale and (c) macro-scale. To take into account collective mechanisms of microplasticity, a relaxation term describing the momentum exchange between meso- and macro scales is incorporated into a dislocation-based constitutive law. This leads to a nonlinear second-order differential equation. Analytical and numerical analyses of the equation are performed. Using as example D16 aluminum alloy, we determine the parameters that provide a satisfactory correspondence between calculated and experimental profiles of particle velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson J.N., Jones O.E., Michaels T.E.: Dislocation dynamics and single-crystal constitutive relation: shock-wave propagation and precursor decay. J. Appl. Phys. 41, 2230–2239 (1970)

    Google Scholar 

  2. Panin V.E., Grinyaev Y.V., Elsukova T.F., Ivanchin A.G.: Structural levels of deformation in solids. Russ. Phys. J. 25, 479–497 (1982)

    Google Scholar 

  3. Eshby M.F.: The deformation of plastically non-homogeneous material. Philos. Mag. 21, 399–422 (1970)

    Article  Google Scholar 

  4. Kröner, E.: Initial studies of plasticity theory based upon statistical mechanics. Colloquium on Elastic Behavior of Solids. Battelle Memorial Inst. Columbus, Ohio (1968)

  5. Johnson J.N., Barker L.M.: Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum. J. Appl. Phys. 40, 4321–4335 (1969)

    Article  Google Scholar 

  6. Prieto F.E., Renero C.: Steady shock profile in solids. J. Appl. Phys. 44, 401–4013 (1973)

    Article  Google Scholar 

  7. Swegle J.W., Grady D.E.: Shock viscosity and the prediction of shock-wave rise times. J. Appl. Phys. 58, 692–701 (1985)

    Article  Google Scholar 

  8. Grady D.E.: Steady rise-time and spall measurement on Uranium (3-16 GPa). In: Murr, L.E., Staudhammer, K.R., Meyers, M.A. (eds.) Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena” (Explomet-85), pp. 763–780. Marcel Dekker, NY (1986)

    Google Scholar 

  9. Asay J.R., Chhabildas L.C. : Determination of the shear strength of shock compressed 6061-T6 aluminum. In: Meyers, M.A., Murr, L.E. (eds.) Shock Waves and High-Strain Rate Phenomena in Metals, pp. 417–428. Plenum Publishing Co, NY (1981)

    Chapter  Google Scholar 

  10. Grady D.E., Kipp M.E.: The growth of unstable thermoplastic shear with application to steady-wave shock compression of solids. J. Mech. Phys. Solids 35, 95–119 (1987)

    Article  MATH  Google Scholar 

  11. Yano K., Horie Y-Y.: Discrete element modeling of shock compression of polycrystalline copper. Phys. Rev. B. 59, 103–122 (1999)

    Article  Google Scholar 

  12. Meshcheryakov, Yu.I.: In: Shock Compression of Condensed Matter-1999. Furnish, M.D., Chhabildas, L.C., Nixon, R.S. (eds) AIP Conference Proceedings-505, pp. 1065–1070. Melville, NY (2000)

  13. Meshcheryakov Yu.I., Divakov A.K., Zhigacheva N.I., Makarevich I.P., Barakhtin B.K.: Dynamic structures in shock-loaded copper. Phys. Rev. B. 78, 64301–64316 (2008)

    Article  Google Scholar 

  14. Mesheryakov, Yu.I.: On Evolutionary and Catastrophic Regimes of Mesomacro Energy Exchange in Dynamically Loaded Media, 6, pp. 765–768. Doklady RAN (2005)

  15. Hinze, J.O.: Turbulence, pp. 680. Mc. Graw Hill Inc., NY (1959)

  16. Indeitsev D.A., Naumov V.N., Semenov B.N.: Dynamic effects in materials of complex structure. Mech. Solids 42, 672–691 (2007)

    Article  Google Scholar 

  17. Taylor J.W.: Dislocation dynamics and dynamic yielding. J. Appl. Phys. 36, 3146–3155 (1965)

    Article  Google Scholar 

  18. Duvall G.E.: Propagation of plane shock waves in a stress-relaxing medium. In: Kolsky, H., Prager, W. (eds.) Stress Waves in Inelastic Solids, pp. 20–32. Springer, Berlin (1964)

    Chapter  Google Scholar 

  19. Johnston W.G., Gilman J.J.: J. Appl. Phys. 30, 129–141 (1959)

    Article  Google Scholar 

  20. Kumar A., Hauser F.E., Dorn I.E.: Viscous drag of dislocation in aluminum at high strain rates. J. Appl. Phys. 38, 1863–1871 (1967)

    Article  Google Scholar 

  21. Bland D.R.: On shock structure in a solid. J. Inst. Math. Appl. 1, 56–75 (1965)

    Article  MathSciNet  Google Scholar 

  22. Gilman J.J.: Dislocation dynamics and the response of materials to impact. Appl. Mech. Rev. 21, 767–783 (1968)

    Google Scholar 

  23. Meshcheryakov Yu.I.: Meso-macro energy exchange in shock-deformed and fractured solids. In: Davison, L., Horie, Y-Y. (eds.) High Pressure Shock Compression of Solids-VI, pp. 169–213. Springer, NY (2003)

    Chapter  Google Scholar 

  24. Meshcheryakov, Yu.I., Divakov, A.K., Barakhtin, B.K., Zhigacheva, N.I.: Interscale momentum exchange in dynamically deformed heterogeneous medium. In: Elert, M.L., Borg, J.P., Jordan, J.L., Volger, T.J. Melville, N.Y. (eds) Shock Compression of Condensed Matter-2011 (2011) AIP Conference Proceedings-1426, pp. 1109–1112 (2012)

  25. Louis K., Maab P., Rieder A.: Wavelet Theory and Applications. Wiley, New York (1997)

    Google Scholar 

  26. Mallat, S.: A Wavelet Tour of Signal Processing. Wavelet Analysis & Its Application, 2nd edn. Academic Press, New York (1998)

  27. Tabak D., Kuo B.C.: Application of mathematical programming in the design of optimal control systems. Int. J. Control 10, 548–552 (1969)

    Article  MathSciNet  Google Scholar 

  28. Gill P.E., Murray W., Wright M.A.: Practical Optimization. Academic Press, New York (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Vavilov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indeitsev, D.A., Meshcheryakov, Y.I., Kuchmin, A.Y. et al. Multi-scale model of steady-wave shock in medium with relaxation. Acta Mech 226, 917–930 (2015). https://doi.org/10.1007/s00707-014-1231-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1231-0

Keywords

Navigation