Skip to main content
Log in

Evolution equation of Lie-type for finite deformations, time-discrete integration, and incremental methods

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

While the position and shape of a deformed body take place in the usual three-dimensional Euclidean space \({\mathbb{R}^3}\), a corresponding progress of the deformation tensor makes up a trajectory in the space of all symmetric positive-definite matrices \({Sym^+(3,\mathbb{R})}\)—a negatively curved Riemannian symmetric manifold. In this context, we prove that a well-known relation \({\partial\mathbf{C}_t=2\mathbf{F}^T\mathbf{d}\mathbf{F}}\) between deformation rate \({\partial\mathbf{C}_t}\) and symmetric velocity gradient \({\mathbf{d}}\), via deformation gradient \({\mathbf{F}}\), can be actually interpreted as an equation of Lie-type describing evolution of the right Cauchy–Green deformation tensor \({\mathbf{C}_t}\) on the configuration space \({Sym^+(3,\mathbb{R})}\). As a consequence, this interpretation leads to geometrically consistent time-discrete integration schemes for finite deformation processes, such as the Runge–Kutta–Munthe-Kaas method. The need to solve such an equation arises from an incremental numerical modelling of deformations of nonlinear materials. In parallel, the exposition is accompanied by an analysis of evolution of the deformation gradient \({\mathbf{F}_t}\) on the general linear group of all non-singular matrices \({GL(3,\mathbb{R})}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical Methods of Classical Mechanics. In: Graduate Texts in Mathematics 60. Springer, Berlin (1997)

  2. Bhatia R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)

    Google Scholar 

  3. Biot M.A.: Mechanics of Incremental Deformations. Wiley, London (1965)

    Google Scholar 

  4. Blanes S., Casas F., Oteo J.A., Ros J.: The Magnus expansion and some of its applications. Phys. Rep. 470(5–6), 151–238 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bridson M.R., Haefliger A.: Metric Spaces of Non-Positive Curvature. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  6. Büttner J., Simeon B.: Runge–Kutta methods in elastoplasticity. Appl. Numer. Math. 41(4), 443–458 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cariñena, J.F., de Lucas, J.: Lie systems: theory, generalizations, and applications. Dissertationes Mathematicae 479. Institute of Mathematics of the Polish Academy of Sciences (2011)

  8. Casas F., Iserles A.: Explicit Magnus expansions for nonlinear equations. J. Phys. A: Math. Gen. 39(19), 5445–5461 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Celledoni E., Marthinsen H., Owren B.: An introduction to Lie group integrators—basics, new developments and applications. J. Comput. Phys. 257, 1040–1061 (2014)

    Article  MathSciNet  Google Scholar 

  10. Celledoni E., Owren B.: Lie group methods for rigid body dynamics and time integration on manifolds. Comput. Methods Appl. Mech. Eng. 192(3-4), 421–438 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Engø K.: On the construction of geometric integrators in the RKMK class. BIT 40(1), 41–61 (2000)

    Article  MathSciNet  Google Scholar 

  12. Faraut J., Korányi J.: Analysis on Symmetric Cones. Oxford Science Publications, Oxford (1994)

    MATH  Google Scholar 

  13. Fiala Z.: Geometrical setting of solid mechanics. Ann. Phys. 326(8), 1983–1997 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hairer E., Lubich Ch., Wanner G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006)

    MATH  Google Scholar 

  15. Hairer E., Nørsett S.P., Wanner G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (1993)

    MATH  Google Scholar 

  16. Holm D.D.: Geometric Mechanics, Part I: Dynamics and Symmetry, Part II: Rotating, Translating and Rolling. Imperial College Press, London (2008)

    Book  Google Scholar 

  17. Iserles A.: Expansions that grow on trees. Not. AMS 49(4), 430–440 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Iserles A., Munthe-Kaas H.Z., Nørsett S.P.: A Zanna, Lie-group methods. Acta Numer. 9, 215–365 (2000)

    Article  Google Scholar 

  19. Isham Ch.J.: Modern Differential Geometry for Physicists. World Scientific, Singapore (2001)

    Google Scholar 

  20. Jost J.: Riemannian Geometry and Geometric Analysis. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  21. Latorre M., Montáns F.J.: On the interpretation of the logarithmic strain tensor in an arbitrary system of representation. Int. J. Solids Struct. 51(7-8), 1507–1515 (2014)

    Article  Google Scholar 

  22. Mäkinen J.: Critical study of Newmark-scheme on manifold of finite rotations. Comput. Methods Appl. Mech. Eng. 191(8-10), 817–828 (2001)

    Article  MATH  Google Scholar 

  23. Marsden J.E., Hughes T.J.R.: Mathematical Foundations of Elasticity. Dover, New York (1993)

    Google Scholar 

  24. Marsden J.E., Ratiu T.S.: Introduction to Mechanics and Symmetry. Springer, New York (1999)

    Book  MATH  Google Scholar 

  25. Munthe-Kaas H.Z.: High order Runge–Kutta methods on manifolds. Appl. Numer. Math. 29(1), 115–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Noll W., Seguin B.: Basic concepts of thermomechanics. J. Elast. 101(2), 121–151 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rougée, P.: Mécanique des Grandes Transformations. In: Mathématique and Applications 25. Springer, Berlin (1997)

  28. Rougée P.: An intrinsic Lagrangian statement of constitutive laws in large strain. Comput. Struct. 84(17-18), 1125–1133 (2006)

    Article  Google Scholar 

  29. Sattinger D.H., Weaver O.L.: Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  30. Simo J.C.: Numerical analysis and simulations of plasticity. In: Ciarlet, P.G., Lions, J.L. (eds) Handbook of Numerical Analysis VI, pp. 183–499. Elsevier, Amsterdam (1998)

    Google Scholar 

  31. Simo J.C., Hughes T.J.R.: Computational Inelasticity. Springer, Berlin (1997)

    Google Scholar 

  32. Tapp K.: Matrix Groups for Undergraduates. AMS, USA (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Fiala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiala, Z. Evolution equation of Lie-type for finite deformations, time-discrete integration, and incremental methods. Acta Mech 226, 17–35 (2015). https://doi.org/10.1007/s00707-014-1162-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-014-1162-9

Keywords

Navigation